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Abstract

Osteoarthritis is the most common form of arthritis in the knee that comes with a variation in symptoms’ intensity, frequency and
pattern. Knee OA (KOA) is often diagnosed using invasive and expensive methods that can measure changes in joint morphol-
ogy and function. Early and accurate identification of significant risk factors in clinical data is of vital importance in diagnosing
KOA. A machine intelligence approach is proposed here to enable automated, non-invasive identification of risk factors from
self-reported clinical data about joint symptoms, disability, function and general health. The proposed methodology was applied
to recognize participants with symptomatic KOA or being at high risk of developing KOA in at least one knee. Different machine
learning and deep learning algorithms were tested and compared in terms of multiple criteria e.g. accuracy, per class accuracy and
execution time. Deep learning was proved to be the most effective in terms of accuracy with classification accuracies up to
86.95%, evaluated on data from the osteoarthritis initiative study. Insights about ten different feature subsets and their effect on
classification accuracy are provided. The proposed methodology was also demonstrated in subgroups defined by gender and age.
The results suggest that machine intelligence and especially deep learning may facilitate clinical evaluation, monitoring and even
prediction of knee osteoarthritis. Apart from the classical implementation of the proposed methodology, a quantum perspective is
also discussed highlighting the future application of quantum computers in OA diagnosis.

Keywords Deep learning . Osteoarthritis . Diagnosis . Clinical data . Symptoms . Osteoarthritis initiative . Quantum computing
perspective

1 Introduction

Osteoarthritis (OA) is the most common chronic condition of the
joints. Compared with other types of OA, knee osteoarthritis
(Martin 1994) is the most widespread having direct correlation
with quality of life. It is a degenerative form of arthritis and
specifically is called Bwear-and-tear^ type, because the cartilage
in the knee joint gradually wears away. The progressive loss of
articular cartilage with concomitant changes in underlying bone
leads to the development of abnormal bony growths, which are
called osteophytes or bone spurs. Knee osteoarthritis occurs most
often in people over 55 years old (Peat et al., 2001) with the
prevalence of the disease rising in people over 65 (Dieppe
1993). OA is also diagnosed in young and athletes following
older injuries (Ackerman et al., 2017). The particularity of this
disease is that the knee osteoarthritic process is gradual with a
variation in symptoms intensity, frequency and pattern. The com-
plexity of the disease combined with the lack of longitudinal
data, as well as an absence of reproducible, non-invasive
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methods to measure changes in joint morphology and function
limit our understanding of the processes governing osteoarthritis
progression. Factors directly related with knee OA are medical
risks factors including advanced age, gender, hormonal status,
body weight or size, usually quantified using body mass index
(BMI), family history of disease along with joint loading during
occupational or physical activities. There is also evidence
supporting genetic association with OA (Cicuttini and Spector
1996), (Valdes et al., 2011).

Knee OA is not easy to define, predict or treat. The prolif-
eration of large observational studies and the availability of
big heterogeneous clinical databases bring new challenges as
well as opportunities for enhanced diagnosis of OA through
advanced data-driven approaches. Several techniques have
been reported in literature in which machine learning models
were employed for knee OA diagnosis. Parameters extracted
from 3D ground reaction forces have been investigated for
their capability to discriminate osteoarthritic (OA) and normal
(NL) knee function in a number of studies. In this context,
various classification models have been proposed in the liter-
ature including Dempster–Shafer theory of evidence, linear
discriminant analysis (Beynon et al., 2006) and nearest neigh-
bor classifiers (Mezghani et al., 2008a, Mezghani et al.,
2008b). More advanced SVM-based decision trees were also
proposed by Moustakidis et al. (2010) to distinguish NL from
OA knee gait patterns as well as investigate OA severity over
thirty-six subjects with an overall accuracy of 93.44%. The
combined use of GRF and 3D kinematic data was also inves-
tigated to predict the level of joint deterioration and pain in
participants suffering from knee OA (McBride et al., 2011).
Generic subject attributes, osteoarthritic outcome scores and
kinematics were further combined by Kotti et al. (2013) for
automatic knee OA recognition on a small sample achieving a
perfect class separation. Genetic parameters along with demo-
graphic characteristics were finally employed for knee OA
classification using support vector machines and probabilistic
neural networks achieving accuracy rates at 76.77% and
90.55%, respectively.

Biomechanical data forms another critical source of informa-
tion for knee OA diagnosis. Şen Köktaş et al. (2006) presented a
method with high accuracy at 98.5% by using MLPs with fea-
tures of the knee joint angle. Deluzio and Astephen (2007) in-
vestigated the association of biomechanical features of gait
waveform with the knee OA by using principal component
analysis. A hybrid approach to the analysis of motion analysis
data using principal component analysis, Dempster-Shafer the-
ory of evidence and simplex plots was proposed by Jones et al.
(2008) to characterize the differences between OA and NL knee
function data and to produce a hierarchy of those variables that
aremost discriminatory in the classification process.Mechanical
measurements of human walking patterns and clinical charac-
teristics have been also validated for grading knee OA using
multilayer perceptron with a moderate accuracy of 80% (Şen

Köktaş et al., 2010). Kotti et al. (2017) applied random forest on
joint kinematics from 94 subjects (47 subjects with OA and 47
healthy subjects) for automatic knee OA detection achieving a
5-fold cross-validated accuracy of 72.61%. EMG signals have
been finally examined by de Dieu Uwisengeyimana and Ibrikci
(2017) for the same purpose using artificial neural networks and
deep learning. As it was concluded in this paper, knee pathology
could be diagnosed more efficiently using surface electromyog-
raphy signals and artificial neural network algorithms that
outperformed deep learning.

Identification of risk factors for developing osteoarthritis has
been limited by an absence of reproducible, non-invasive
methods to inform clinical decision making and enable early
detection of people who are most likely to progress to severe
OA. Given the recognized clinical and biological heterogeneity
of knee OA, there is an urgent need for clinical tools that will be
able to diagnose and potentially predict KOA. This paper makes
a contribution towards KOA diagnosis through the application
of various machine intelligence models on self-reported clinical
data (such as symptoms, disability, function and general health)
from the osteoarthritis initiative study (http://www.oai.ucsf.
edu/). Different machine learning models as well as deep
learning architectures were tested with respect to their ability
to recognize participants with symptomatic KOA or being at
high risk of developing KOA in at least one knee. The effect
of various feature subsets was also investigated. These feature
categories are related to (i) the temporal occurrence of symp-
toms, (ii) symptoms’ type and (ii) participants’ quality of life
status. WOMAC and KOOS features were also evaluated for
their capacity to diagnose KOA. Finally, the best performing
approach (deep learning) was demonstrated in subgroups de-
fined by gender and age. A quantum perspective of the applica-
tion of deep learning techniques for the task of OA diagnosis is
also given in the discussions.

The paper is organized as follows. Section 2 gives a de-
scription of the dataset that was used in our paper including
origin and main characteristics. In Section 3, the proposed
deep learning methodology along with the necessary data
preparation and validation mechanisms is presented. Results
are given in Section 4. Discussion of the results is provided in
Section 5, whereas Section 6 gives a quantum perspective of
the proposed methodology. Conclusions and future work are
finally drawn in Section 7.

2 Data description

Data was obtained from the osteoarthritis initiative (OAI) da-
tabase which is a multi-centre prospective longitudinal cohort
study designed to identify risk factors associated with the in-
cidence and progression of KOA (Eckstein et al., 2012).
Launched in 2002, OAI began enrolling people, aged 45–
79 years, with symptomatic KOA or being at high risk of
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developing KOA in at least one knee in four US medical
centres. In total 4796 participants were recruited and followed
over an 8-year period with a follow-up rate of more than 90%
over the first 48 months.

The current study only includes self-reported data about
joint symptoms, disability, function and general health from
all individuals with or without KOA from the baseline visit.
The selected dataset, that comprises of 141 risk factors from
4796 participants, was further separated into 10 overlapping
feature subsets with different characteristics. Three subsets are
relevant with the temporal occurrence of symptoms, four sub-
sets refer to different types of self-reported symptoms and one
involves features related to health, emotional problems, life-
style and psychology. Hybrid metrics related toWOMAC and
KOOS have been also considered as separate sets. The effect
of each feature subset on the KOA diagnosis was investigated
in the following sections of the paper, providing insights about
their clinical significance. Table 1 cites the main characteris-
tics of the 10 feature subsets considered in our paper.

Furthermore, the 4796 samples of the dataset were divided
into three categories as follows:

– Class 1: Incidence: This class comprises of 3284 partici-
pants who do not have symptomatic tibiofermoral knee
OA at the screening clinic visit in at least one knee, but
who domeet the risk factor eligibility criteria for their age
group.

– Class 2: Progression: This class involves 1390 partici-
pants with frequent knee symptoms, which are defined
as Bpain, aching or stiffness in or around the knee onmost
days^. These participants had knee symptoms on most
days of 1 month of the preceding year and radiographic
tibiofemoral knee OA (Osteoarthritis Research Society

International (OARSI) atlas grades 1–3) on a fixed-
flexion radiograph at recruitment in at least one knee.

– Class 3: Non-exposed control group: 122 participants
have been assigned in this class without any knee symp-
toms in either knee, who do not have any of the eligibility
risk factors and who have OARSI grade 0 in both
tibiofermoral compartments for osteophytes.

The following 2 classification problems were investigated
in this paper: (a) a 2-class problem with the objective to dis-
criminate participants belonging to class 1 (progression) and
class 2 (incidence), (b) a 3-class problem that is a multi-class
classification problem where all three classes were considered
in the training and testing datasets. It should be noted that class
3 is much smaller than the other two thus setting a highly
imbalanced data challenge.

3 Methodology

The proposed in this paper machine intelligence methodology
for OA classification includes three processing steps: data pre-
processing to handlemissing values and normalize the collected
clinical data, a learning process for training, and evaluation of
the classification results, as illustrated in Fig. 1. The proposed
methodology is thoroughly presented in the following sections.

3.1 Pre-processing

Mean imputation was performed to handle missing values.
Specifically, for numerical features missing values were re-
placed by the mean feature value. In case of categorical fea-
tures, the most frequent category was used to replace NaNs.

Table 1 Main characteristics of the feature subsets considered in this paper

Category Num. of features Feature category Description

Temporal occurrence of symptoms 68 past week Any type of symptoms over the past 7 days

10 past month Any type of symptoms over the past 30 days

13 past year Any type of symptoms over the past 12 months

Type of symptoms 64 Pain Features related to pain in various activities for
both knees, hips and joints in all time intervals

27 Stiffness Features related to stiffness in all the time intervals

37 Knee difficulty Knee difficulty on either right or left leg on various
activities in all time intervals

12 Other symptoms Symptoms such as swelling, grinding sensation,
knee catch or hang up in all time intervals

Quality of life 15 Quality of life Features related to health, emotional problems,
lifestyle, psychology

Hybrid metrics 8 WOMAC Indexes which consist a score of questions about pain,
symptoms and quality of life for both of knees

5 KOOS Indexes which consist a score of questions about pain,
stiffness and disability for both of knees
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Since activation functions of DNNs do not generally map into
the full spectrum of real numbers, we first standardized our
data to be drawn from N(0; 1). Normalization also allowed us
to compute more precise errors in this standardized space,
rather than in the raw feature space. Data resampling was
employed to cope with the class imbalance problem.

3.2 Learning process

Various machine intelligence models were evaluated for the
suitability in the task of OA classification. Both machine
learning and deep learning techniques were investigated, as
described below.

Machine learning models We tested linear discriminant anal-
ysis (LDA) (Duda et al., 2012) to provide a baseline for com-
parisons with more advanced models. We also evaluated de-
cision trees (Belson 1959,Witten et al., 2016) driven byGini’s
diversity index, KNN and weighted KNN (Atkeson et al.,
1997), as well as non-linear support vector machines (SVM)
algorithms with Gaussian kernel (Cortes and Vapnik 1995,
Scholkopf 1997), which can deal with the overfitting prob-
lems that appear in high-dimensional spaces. The ensemble
techniques AdaBoost (Freund and Schapire 1997) and
Random Forest (Breiman 2001) were also evaluated using
DT models as weak learners. Three fuzzy based algorithms
were also tested including Fuzzy K-Nearest Neighbors
(FKNN) and Fuzzy Nearest Prototype classifier (Fuzzy

NPC) by Keller et al., 1985) as well as Condensed Fuzzy K-
Nearest Neighbors (CFKNN by Zhai et al., 2014).

Deep learning models Deep learning (LeCun et al., 2015)
holds great promise to fulfill the challenging needs of various
industries including data-driven healthcare. It performs
human-like reasoning and extracts compact features which
embody the semantics of input data. Deep neural networks
are stacked layer models in which a series of layers is connect-
ed together including an input layer, an output layer and a few
hidden layers placed between them. The number of nodes in
the input and output layers correspond to the dimensionality
of the input and the target data, respectively. The nonlinear
relationship between the DNN layers is indicated by the fol-
lowing equations:

zlj ¼ ∑
i

wl
i; jx

l−1
i þ blj ð1Þ

hW;b xð Þ ¼ f zlj

� �

¼ f ∑
i

wl
i; jx

l−1
i þ blj

� �

ð2Þ

where xlj is the activation value of neuron j in layer l; zlj is a
linear activation combination of neurons in the previous layer;
blj is the bias value of neuron j in layer l; wl

i; j is the weight
parameter between node i in layer l− 1 and node j in layer l;
and f(.) is the activation function.

Our DNN models use fully connected, dense neural layers
where the output of one layer serves as the input for the next
layer. A number of different DNN structures were investigated

Fig. 1 Flowchart of the proposed machine intelligence methodology

Quantum Mach. Intell. 2019 1:73–86( )76



in this paper with varying: (i) input dimensionality (as
described in Table 1), (ii) number of hidden layers and (iii)
number of nodes per hidden layer. Rectified linear activation
was selected given that it has demonstrated high performance
on a variety of recognition tasks, and is a more biologically
accurate model of neuron activations (LeCun et al., 2006).
The final neural layer reduces the dimensionality to either 2
or 3 nodes using Softmax as activation function. Adaptive
learning rate was employed with ADADELTA (Zeiler 2012)
that automatically combines the benefits of learning rate an-
nealing and momentum training to avoid slow convergence.
Weight initialisation was performed using uniform distribu-
tion. Early stopping was implemented based on the conver-
gence of the logloss metric.

3.3 Validation

Ten-fold cross validation (10FCV) was used to evaluate the
effectiveness of the learned classification models. The dataset
was split into 10 subsets, called folds. The train-test method
was applied iteratively by using each of the 10 folds for test-
ing, while the learning model was trained with the remaining
nine. The performance was calculated by averaging the indi-
vidual ten test scores. To achieve a fair comparison between
the different approaches, hyperparameter selection was per-
formed for each one of the investigated machine and deep
learning algorithms. A validation subset was held out from
the training sets (a randomly selected 10%) as a criterion for
selecting the optimum hyperparameters by means of a grid
search process.

4 Results and comparisons

4.1 Comparative analysis

This subsection cites the results of a comparative analysis over
a number of well-established machine learning and deep
learning models on the problems of 2-class and 3-class clas-
sification using the entire feature sets. Cross validated results
are shown in Table 2, whereas the optimal hyperparameters
are highlighted per model. Each model was optimized on the
validation subsets with respect to the following parameters: (i)
minimum leaf size and maximal number of decision splits for
Decision Trees, (ii) C and sigma for SVMs, (iii) k-parameter
for KNN, Fuzzy KNN, Fuzzy NPC and CFKNN, (iv) number
of weak learners and weak learner type for Adaboost and
Random Forest and (v) number of hidden layers and number
of nodes per layer for Deep Neural Networks.

The best overall performance on the 2-class problem
(80.74%) was achieved by the DNN model with 3 hidden
layers and 50 nodes per layer. DNN also outperformed all
the rest ML models in the 3-class problem demonstrating at

the same time the highest level of accuracy stability over the
10 testing folds (79.5% overall accuracy with a standard de-
viation of 1.2). However, this accuracy comes with an increase
of computational complexity since DNNwas the slowest in its
execution with 31.5 s and 36.4 s training time for the 2-class
and 3-class problems, respectively. KNN was the fastest algo-
rithm with 0.016 s and 0.03 s execution time for the 2- and 3-
class problems achieving moderate performances. Statistical
significance analysis was also performed by applying t-tests at
the confidence level of 5% on the accuracies obtained on the
10 CV data folds. The results of DNN were significantly dif-
ferent from the majority of the rest models for both 2-class and
3-class problems. No significant differences were obtained on
the results of DNN, SVM, Adaboost and Random Forest in
the 2-class problem and the results of DNN and SVM for the
3-class problem.

The classification performance of the best performing
models (in which no significant statistical differences were
identified) was further evaluated with respect to various vali-
dation metrics including confusion matrix, class precision,
sensitivity and specificity.

Table 3 demonstrates the results of DNN, SVM, RF and
Adaboost on the 2-class problem. Apart from being the best
model in terms of overall accuracy, DNN achieved the highest
sensitivity (92.54%) as well as the highest precision for the
class ‘progression’ (84.96%) maintaining a 78.96% precision
for class ‘incidence’. The highest specificity was achieved by
RF that although did not performwell on the progression class
(having a class precision of 73.95% that was the lowest among
the four models). On the 3-class problem (Table 4), DNN
accomplished the highest accuracies for two of the three clas-
ses (incidence and non-exposed) having also the second
highest accuracy for the progression class. SVM achieved
the highest class accuracy for ‘progression’ samples and it
failed in recognizing the non-exposed class with only 9.83%
correct assignments. Overall, DNN was proved to be the most
effective model in terms of the overall accuracy and the rest of
the validation metrics. Despite being the most computational-
ly intensive, DNN was selected for the rest of the experimen-
tation on this paper given that its execution time was not
prohibitive for performing multiple runs. The role of quantum
computing is also discussed in Section 6 towards a more effi-
cient implementation of such complex models that will alle-
viate the computational burden of the existing models
nowadays.

4.2 Effect of feature categories on the classification
performance

DNN is utilized in this subsection as a criterion for evaluating
the discriminating capability of different feature categories.
Results are demonstrated in different DNN architectures to
assess the effect of the DNN structure on the classification
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performance. Figure 2 shows the performance of different
DNN architectures on the 2-class problem using feature sub-
sets that correspond to symptoms occurred at different time
periods before the visit. The best accuracy (79.35%) was ob-
tained for the feature subset ‘past month’ using an architecture
of 3 hidden layers (with 100 nodes at each layer) applied after
data resampling. The feature subsets ‘past week’ and ‘past
year’ were proved to be slightly less informative achieving
accuracies marginally higher than 78%.

The effect of symptoms’ type on the diagnosis of KOAwas
also investigated. Figure 3 depicts the performance of DNN
using features that correspond to symptoms related to pain, stiff-
ness, knee difficulty and other symptoms such as swelling and
grinding. Stiffness was proved to be the most informative symp-
tom with the maximum accuracy of 80.3% achieved by the best
DNN using only features related to pain. It is worth to notice that
this accuracy is very close to the best accuracy achieved using the
entire feature set. Pain-related features were the second best that

led to accuracies of 78.2%–79.2% using the deepest DNN
models. The rest of symptom types achieved lower performances
in the range of 73%. Figure 4 shows the performance obtained
using WOMAC-based, KOOS-based features and risk factors
related to health and quality of life. A 10FCV performance of
approximately 80% was received using DNN models trained on
WOMAC features, whereas KOOS and QoL features led to
accuracies up to 75.33% and 73.68%, respectively.

Figure 5 summarizes all the classification accuracies ob-
tained from the best performing DNN architectures trained
on the 2-class problem (blue line) using the proposed 10 fea-
ture subsets. The same analysis was performed on the 3-class
problem and the best accuracies per feature category are
shown in same figure in orange. It was concluded that the
addition of the third class led to a small decay in all the per-
formances received over all the feature subsets. As far as the
class accuracy of the non-exposed participants, the following
remarks could be drawn from Fig. 6: (i) WOMAC features

Table 2 Comparative analysis between the best DNN models and state-of-the-art ML models

Model type 10 fold cross validation accuracy (%)

2 classes 3 classes

Overall (std) Time (s) Overall (std) time

Decision trees (minimum leaf size: 5, Split criterion:
Gini’s index, Maximal number of decision splits: 7)

79.3* (2.1) 0.22 77.7* (2.0) 0.26

Linear Discriminant 80.1* (2.3) 0.07 76.2* (2.8) 0.08

SVM Gaussian (C = 1, sigma =0.15) 80.2 (1.05) 2.8 79.1 (1.34) 3.2

KNN (k = 9) 79.1* (1.8) 0.016 76.9* (2.2) 0.03

Fuzzy KNN (k = 11) 79.2* (1.33) 0.034 77.39* (1.45) 0.06

Fuzzy NPC (k = 5) 77.8* (1.24) 0.09 72.4* (1.9) 0.11

CFKNN (K = 9) 78.6* (1.06) 0.1 73.6* (2.05) 0.14

Adaboost (number of weak learners: 130, Maximal number
of decision splits: 1024, weak learner: DT)

80.6 (1.33) 25.6 78.6* (1.2) 28.7

Random Forest (number of weak learners: 130, Maximal
number of decision splits: 4, weak learner: DT)

80.1 (1.1) 5.1 77.7* (1.86) 5.5

Deep Learning (Adam optimization, ReLU functions, adaptive
learning rate, 3 hidden layers, 50 nodes per layer)

80.7 (1.1) 31.5 79.5 (1.2) 36.4

*Significantly different from DNN (p < 0.05) by applying t-tests on the 10FCVaccuracies over the 10 data folds

Bold refers to maximum performance achieved per category

Table 3 Confusion matrix for the
best DNN architecture on the 2-
class problem using the entire
feature set

Model Incidence Progression Precision Sensitivity Specificity Overall

accuracy

DNN Incidence 2593 691 78.96% 92.54% 63.08% 80.74%

Progression 209 1181 84.96%

SVM Incidence 2633 651 80.17% 90.54% 63.13% 80.19%
Progression 275 1115 80.21%

RF Incidence 2720 564 82.82% 88.25% 64.57% 80.1%
Progression 362 1028 73.95%

ADA Incidence 2617 667 79.68% 91.59% 63.29% 80.59%
Progression 240 1150 82.73%
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provided an almost perfect (99.19%) identification of class 3,
(ii) the feature subsets ‘stiffness’ and ‘pain’ accomplished a
moderate performance, classifying correctly only 51.64% and
47.55% of the control participants, respectively and (iii) from
the rest of the feature subsets, only QoL features contributed
with a 12.3% per-class accuracy for class 3. The remaining
feature subsets, that do not appear in Fig. 6, did not contribute
at all in the identification of class 3 participants.

4.3 KOA diagnosis with respect to gender and age

Table 5 cites classification accuracies obtained by the proposed method-
ology trained on data subgroups with the full feature set. The following
four subgroups were considered: (i) participants older than 70 years, (iii)
participants under 70 years, (iii) male participants and (iv) female partic-
ipants. Significant difference was observed between the two age sub-
groups. Specifically, a performance of 86.95% was achieved on the

Fig. 2 Results for different DNN architectures for the 2-class classification problem using features that corresponds to symptoms occurred over the: (a)
last week, (b) last month and (c) last year

Table 4 Confusion matrix for the
best DNN architecture on the 3-
class problem using the entire
feature set

Model Incidence Progression Non-

exposed

Per class

accuracy

Overall

accuracy

DNN Incidence 2813 431 40 85.65% 79.50%

Progression 442 948 0 68.20%

Non-exposed 70 0 52 42.62%

SVM Incidence 2767 472 45 84.25% 79.08%
Progression 375 1014 1 72.94%

Non-exposed 110 0 12 9.83%

RF Incidence 2740 544 0 83.43 77.68%
Progression 452 936 2 67.33

Non-exposed 70 2 50 40.98

ADA Incidence 2807 436 41 85.47% 78.58%
Progression 467 921 2 66.25%

Non-exposed 79 2 41 33.60%

Bold refers to maximum performance achieved per category
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KOA recognition for older participants, whereas the KOA diagnosis
accuracy of the 70- age subgroup (80.81%) was closer to the overall

accuracy takenon theentiredataset.Accuraciesof~81%andanegligible
difference of approximately 0.5%were received for themale and female

Fig. 3 Results for different DNN architectures for the 2-class classification problem using features that corresponds to symptoms related to: (a) pain, (b)
stiffness, (c) knee difficulty and (d) other symptoms

Fig. 4 Results for different DNN architectures for the 2-class classification problem using: (a) WOMAC features, (b) KOOS features and (c) features
related with participants’ quality of life
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subgroups suggesting that gender is not a factor that could considerably
differentiate the diagnosis capacity of the DNNmodels.

5 Discussion of results

An overall performance of 80.74%was achieved in the 2-class
problem by the best DNN model trained on the entire feature
set, whereas a small accuracy decay was observed when the
third class of control participants was added. This decay can

be attributed to the inability of the model to cope with the data
imbalance issue where class 3 is much smaller in size than
classes 1 and 2. Specifically, only half of the control partici-
pants were correctly classified indicating the difficulty to dif-
ferentiate them from participants of high risk to develop KOA.
The inclusion of data resampling contributed to better accura-
cies for class 3 participants outperforming the performance of
all the DNN models trained on the original datasets (without
data resampling). Finally, the proposed DNN was compared
with well-known machine learning techniques and the results

Fig. 6 Accuracy rates for the participants belonging to class 3 (control) for different DNN architectures using features related to (a) stiffness, (b) quality
of life, (c) pain and (d) WOMAN features

Fig. 5 Results of the best performing DNN architectures for the 2-class (blue line) and 3-class (orange line) classification problem using different feature
subsets
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verified the superiority of deep learning in the KOA diagnosis
task in terms of accuracy while being more computationally
intensive. As far as the architecture of the selected DNNmod-
el, it was concluded that adding more layers (apart from in-
creasing computational complexity to the training and testing
phases), allowed for more easy representation of the interac-
tions within the input data and therefore led to the highest
accuracy in the case of using the full feature set (Tables 2, 3
and 4). Acting as a universal approximator, DNN architectures
with 2 hidden layers also gave high accuracy during the eval-
uation of the different feature subsets.

As far as the effect of the symptoms’ type on the diagnosis
of KOA, stiffness was proved to be the most informative
symptom leading to an accuracy of 80.3%. Accuracies in the
range of 78.2% - 79.2% were received by the deepest DNN
models (with 3 hidden layers) trained on pain-related features
revealing the importance of pain as a critical risk factor in
KOA diagnosis. The rest of symptom types achieved lower
performances at the level of 73%. WOMAC also had a signif-
icant effect on the KOA diagnosis as demonstrated by the
approximately 80% accuracy of the DNNmodels trained only
withWOMAC features. KOOS and features related with qual-
ity of life led to lower accuracies (up to 75.33% and 73.68%,
respectively). Small difference in accuracy was observed be-
tween the three feature categories that were defined by the
temporal occurrence of symptoms (last week, month and
year). In the challenging task of discriminating control partic-
ipants from those in high risk, WOMAC features provided an
almost perfect (99.19%) identification of class 3, whereas the
DNN models trained on the feature categories ‘stiffness’ and
‘pain’ classified correctly only 51.64% and 47.55% of the
control participants, respectively. The rest of the feature sub-
sets had a minor or no effect on the identification of class 3
participants.

The application of the proposed method in subgroups re-
vealed that it is possible to build even more accurate diagnos-
tic models that work for specific populations. The model built
on the aged subgroup (70+) accomplished an 86.95% accura-
cy that was the highest reported in this paper. This finding
implies that local models trained on more focused populations
could outperform the global one. The model trained on the 70-
subgroup provided an accuracy (80.81%) closer to the

performance of the global model. No significant difference
was received in the accuracies from male and female sub-
groups except to a slight increase for both in the range of
approximately 2% compared to the global model.

6 Quantum classification perspective
for osteoarthritis classification

Machine and deep learning have recently achieved impressive
results in various sectors including healthcare. This can be
attributed to the increased computational power and data
availability, as well as algorithmic advances. However, we
have almost reached the physical limits of the current solu-
tions in terms of their speed whereas the size of the available
datasets is still increasing. Given the above challenges, quan-
tum computers may be useful for accelerating the training
process of existing learning models as well as providing a
way to learn more about complex patterns in physical systems
that conventional computers cannot in any reasonable amount
of time.

Recent findings by Havlíček et al., 2019set new horizons
on the effective combination of machine and deep learning
with quantum computing altering how computations are per-
formed to address previously untenable problems without re-
quiring fundamentally new algorithms. Quantum computing
is expected to give AI such a boost that it would be able to
discover hidden patterns within huge datasets alleviating the
computational burden of the existing deep learning algo-
rithms. Significant progress has been recently made in this
area towards a better understanding of quantum computers’
power for learning tasks. Quantum Neural Networks (QNN)
have been proposed by Farhi and Neven 2018 investigating
how a popular classification task might be carried out on
quantum processors. Despite being primarily theoretical, this
study envisions the practical implementation of QNN in the
near future. Issues related with the robust training of such
networks have been also discussed by McClean et al.,
2018with the aim of guiding future strategies for initializing
and training QNNs.

The results of this paper on the task of OA classification
revealed that DL offers the best solution which unfortunately

Table 5 Classification accuracies
on different data subgroups subgroups problem accuracy Best model

DNN architecture Data sampling

age 70+ 3-class 86.95% 3 hidden layers

(100–100-100)

on

70- 3-class 80.81% 3 hidden layers

(50–50-50)

off

gender Male 3-class 81.37% 2 hidden layers (100–100) on

Female 3-class 81.81% 2 hidden layers (100–100) off
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comes with an increase of the computational complexity and
therefore the execution time that is required for training.
However, the advent of quantum computing brings a new
perspective alleviating the computational burden of all the
existing learning techniques that are physically limited by
the current chip fabrication approaches. The arrival of full-
scale quantum computers is expected to accelerate and boost
the currently employed deep learning technique, letting the
proposed AI system to find unexplored hidden patterns in
the multi-dimensional OA database and thus provide more
robust diagnosis.

7 Conclusions

The proposed methodology shows potential for non-invasive
OA diagnosis. Here we demonstrated its potential to reliably

identify informative risk factors from self-reported clinical
data and recognize at a certain level participants with symp-
tomatic KOA or being at high risk of developing KOA in at
least one knee. A quantum computing perspective of the fu-
ture application of the proposed methodology is also
discussed highlighting the potential to massively speed up
certain types of classification problems. Our method may

promote future development and clinical implementation of
non-invasive tools for KOA diagnosis and prediction. Future
work includes the development of machine learning and deep
learning models that could predict the progression of the dis-
ease using selected risk factors. More emphasis will be given
to local prediction models that will be trained on data sub-
groups defined by parameters such as body mass index com-
bined with demographics and social indicators. The method-
ology will be finally extended to include parameters from
more disciplines including nutrition, medical history, bio-
markers and physical measurements of participants performed
in the clinic. Research at the intersection of machine learning
and clinical research offers great promise for improving OA
related research, advancing clinical decision-making and ac-
celerating intervention programs. To enhance appropriate use
of machine/deep learning techniques and stay abreast of new
developments in advance analytical techniques, open data and
scientific tools must be dynamically encouraged within the
OA research community.
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Appendix
Hyperparameter selection over the validation sets
(average) for different classification methods
on the 3-class problem

Fig. 7 Average validation performance of various DNN architectures
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Fig. 8 Average validation
performance for Adaboost with
respect to the number of weak
learners and the maximum
number of splits (DT as weak
learner)

Fig. 9 Average validation
performance for Random Forest
with respect to the number of
weak learners and the maximum
number of splits (DT as weak
learner)
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Fig. 10 Average validation performance for SVM with respect to the kernel scale and the C parameters

Fig. 11 Average validation performance for KNN, Fuzzy KNN, Fuzzy NPC and CFKNN with respect to k parameter
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