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1 Executive Summary 
This deliverable relates to the activity performed, during the reporting period, within OACTIVE WP 5: 
Behaviour Modelling and Environmental Biomarkers. In particular, the report refers to Task 5.2, led by 
CERTH. 

The following document describes the activity carried on to implement a behavioural model of KOA 
(Knee OA) patient. The main aim was to gather the data which are necessary to the generation of the 
behavioural model, from direct measurement of patients by the means of wearable platforms developed 
within OACTIVE frame  

With respect to the methodological part, we particularly focus on the design of a complete methodology 
that can take advantage of collected sensor data to generate a behavioral model that can be supportive in 
predicting future development of Knee Osteoarthritis or even in the individual’s rehabilitation after  knee 
surgery for Osteoarthritis. More precisely, we estimate uncommon behaviors within daily activities as an 
indication for further examination. Based on accelerometer sensor data, the proposed framework utilizes 
state-of-the-art Machine Learning models for Human Activity Recognition and Deep Hybrid Models for 
outlier detection suggesting a solid basis for further developments and wider applicability. 

Following project evolution, the activity related to sensor development in the OACTIVE frame has been 
extended in order to complement the data set coming from a controlled environment (motion lab) 
developed in the first phase (D5.1), with data obtained in an uncontrolled environment. For this reason, 
the set of sensors available in OACTIVE has been expanded with a device, always IMU based, able to be 
used autonomously by the patient directly at home. This approach allows to provide two complementary 
data set for the development of the behavioural model of OA patient: the first provides information on 
how OA affects patient’s movement, the second on how OA influences patient’s habits and behaviour. 
Both versions of the developed electronic board include an IMU sensor (MPU 9250 by Invensense) with 
9 DoF, an M3 micro-controller, Bluetooth transmission and a LiPo battery of 660 mAh. The case and 
package have been designed to optimize handling and comfort when worn. Different textile accessories, 
developed internally at Smartex, have been provided for easy don and doff of the devices. 
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2 Introduction 
Osteoarthritis (OA) is one of the most diffused forms of musculoskeletal disorders and the most 
prevalent chronic rheumatic diseases worldwide (Bortoluzzi et al., 2018). OA is considered as a complex 
disease in both treatment and rehabilitation processes, with some cases such as the knee OA there is not a 
sufficient cure (Taylor et al., 2010). Recent advancements in IoT technologies have shifted part of the OA 
research on behavioral monitoring using wearable devices (Belsi et al., 2016). Many wearable devices as 
smartwatches, smart bands and smartphones have seen an increase in use, as they are widely available,  
low-cost, they have high computational power and can be used by people of all ages and education 
profiles. Additionally, these devices can be easily used for continuous daily monitoring, as they are small 
and with long battery life and autonomy. Using daily continuous monitoring along with a robust human 
activity classification system we can model a personalized activity profile which can be later used in data 
mining tasks (profile grouping, prediction etc). Weight, height, gender, age, physical and overall health 
condition, but also everyday habits like exercise, nutrition and smoking combined with the personal daily 
activity profile of an individual, may play an important role in the prediction of future development of 
knee Osteoarthritis or even in the individual’s rehabilitation after a knee surgery for Osteoarthritis (White 
et al., 2014).  

Both aforementioned documentations could be used to make personalized Osteoarthritis prediction, 
activity recommendation system and many other knee Osteoarthritis related systems, as a long-term 
activity monitoring of individuals with high variability of personal characteristics can be documented and 
combined with the outputs’ provided information. Another recent example showing the usefulness of a 
Human Activity Recognition (HAR) Behavioral Model could be the analysis of the influence of very 
specific situations, like the quarantine for COVID-19 in the profile of the daily activities of people 
(D’Angelo & Palmieri, 2021). 

Towards this direction, there is a remarkable progress related to wearable-based studies for OA and more 
specifically for knee OA (Saida et al., 2020; Burrows et al., 2020; Chen et al., 2015). More specifically, the 
effect of total knee arthroplasty (TKA) on trunk fluctuation and regularity of gait in patients with knee 
osteoarthritis has been recently classified successfully through an analysis using accelerometers (Saida et 
al., 2020). It has been shown that several factors influence the association between physical activity and 
pain from knee OA while the increased levels of daily physical activity are related with reduced onset and 
progression of knee OA (Burrows et al., 2020). An indicative study for knee OA along with wearable-
based analysis is the work of Chen et al. (2015) where the authors developed a system that can identify the 
type of exercise movement the user performed and detect deviations from the correct exercise 
movement. Using three wearable accelerometers as signal source, the experimental results demonstrate 
the feasibility of the proposed mechanism, which can help patients perform rehabilitation movements and 
progress effectively. Although the promising results given by the previous studies, the increase in OA-
related available data as well as the improvement of wearable-based technologies and mining tools offer 
us the opportunity for exporting more reliable OA signatures. 

In the OACTIVE project, we particularly focus on adapting HAR for Behavior Modelling within OA’s 
prognosis-prevention and/or to the rehabilitation of OA patients, slowing down OA progression. In 
detail, we propose a complete methodology based on the combination of Supervised and Unsupervised 
Learning. Initially, we focus on identifying daily activities such as walking, jogging, going 
upstairs/downstairs and sitting, as they are the most usual physical activities in a person’s daily life, and 
they involve knee movement. For this purpose, we focus on the utilization of accelerometer data while, 
we employ pre-trained Deep Learning models incorporating open-source labelled activity databases. HAR 
based only on accelerometer data retrieved from a single device remains a challenging task, motivating us 
to utilized state of the art models for this purpose. Once the HAR process is complete, we take one step 
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further, trying to identify abnormal behaviors of one’s activity in an unsupervised manner. To this end, 
we focus on a hybrid methodological framework, usually referred as “Deep Hybrid Model” where a Deep 
Learning method such as the Autoencoders is utilized for feature extraction, followed by a conventional 
Machine Learning algorithm or statistical process. We interestingly observe that even for non-OA 
patients’ databases we are able to identify persons with uncommon walking behavior. Through our 
proposed model we aim to provide an additional critical marker on top of current Behavioral 
Modelling/Monitoring methods. 
 
 
  



OACTIVE –777159  SC1-PM-17-2017 

Deliverable D5.2 
 
 

 

3 Behavioural Model 
3.1 Human Activity Recognition 

In Human Activity Recognition (HAR), various daily human activities such as walking, running, standing, 
sitting, drinking, eating, driving, etc. are recognized, in controlled or uncontrolled states. Recently it has 
become one of the trendiest research subjects in academia for numerous applications, mainly due to its 
applications in Healthcare and Eldercare where it is combined with advancements in Machine Learning, 
Big Data and Internet of Things (IoT). HAR can be done with data, collected by different means such as 
1) ambient sensors and/or well-placed cameras in labs or smart houses and 2) inertial sensors of wearable 
devices like specialized harnesses placed anywhere on the body, smartphones and even wrist-worn 
smartwatches and smart-bands (Stisen et al., 2015). 

Inertial sensor- based HAR systems still face many challenges, including 1) complexity and variety of daily 
activities, 2) intra-subject and inter-subject variability for the same activity. Consequently, as a user's 
movements drift from the generic, the system error increases. So, the method for activity classification 
should have the ability to generate adapted results for each different user, 3) the trade-off between 
performance and applicability, 4) the fact that small difference in sensor placement/specifications may 
give dramatically different data, 5) computational efficiency in embedded and portable devices and most 
critically 6) difficulty of data annotation (Lana & Labrador, 2012). 

The typical structure of a HAR system involves a training phase where a classifier learns how to identify 
specific activities. In more detail, classifying data points created by tri-axial accelerometers and 
gyroscopes, falls to the area of classifying time-dependent sequences into known well-defined 
movements. Traditional approaches involve hand-crafting features extracted from the time series data, 
corresponding to time windows of fixed-size (Suto et al., 2017). Unfortunately, feature extraction requires 
deep expertise in the field and even then, derived models may have limitations in generalizability. 
Recently, Deep Learning methods such as Recurrent Neural Networks (RNN) and most precisely their 
LSTM variation, along with the one-dimensional Convolutional Neural Networks (CNN), have been 
shown to provide impressive results on activity recognition tasks by automating the data feature 
engineering process. The former takes care of time dependence, keeping in memory previously gained 
information and the latter tends to uncover hidden patterns in a time window, utilizing a convolution step 
(Ordóñez & Roggen, 2016). 

 

3.2 HAR in Behaviour Monitoring 

In Behaviour Monitoring, usually a system analyses patterns such as destinations, frequency and 
periodicity of specific identified incidents which indicate whether the behaviour exceeds a specified 
baseline or threshold (Amor et al., 2014). Regarding the observation of people’s lifestyle, behaviour 
changes, possible progresses constitutes the obtained knowledge that can be utilized by computer-based 
models in plenty of important applications, solving individual and social problems. For example, the 
development of an Osteoarthritis patient’s Behaviour Model, requires daily monitoring and analysis of 
his/her physical activities (Williamson et al., 2015). The utilization of the provided information like the 
frequency and duration of every activity performed daily for a specific time-period, supportively 
contributes towards the development of predictive models that are capable to understand the onset and 
progression of OA. Such models could be utilized by expert physicians in prognosis and/or diagnosis of 
the disease, developing personalized treatment plans, or evaluating the rehabilitation after an OA surgery 
(Semanik et al., 2015). 
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To this end, it is important to notice, that activity classification accuracy is not of critical importance, as 
even if there are a minor portion of mis-classifications, the impact on the reliability of the finally created 
behaviour model is expected to be insignificant. In general, a fuzzy activity prediction that monitors 
generic activity behaviour is combined with information provided by medical history and demographics  
such as age, gender, weight-height and lifestyle of an individual, in order to provide the tools for a 
complete person-adapted model (Song et al., 2010). 

Here we take one step further, to adapt HAR for Behaviour Modelling within knee OA’s prognosis-
prevention and/or to the rehabilitation of knee OA patients. In detail, we propose an additional 
supported Anomaly Detection step, which could be used to evaluate if a subject executes some basic 
physical daily activities normally, or not. We are particularly interested in examining daily activities such as 
walking, jogging, going upstairs/downstairs and sitting, as they are the most usual physical activities in a 
person’s daily life and they involve knee movement. 

The anomaly detection task could be dealt as a supervised classification problem, utilizing an individual 
pretrained algorithm for every activity towards a binary classification task (“normal” and “abnormal”). 
However, in this case we would require either data created within a lab environment or study participant 
annotation during daily life cycle, leading to impractical circumstances in both cases. Limited availability 
and time requirements in the first case and subjective view of individuals in the second respectively. 

Subsequently, we proposed a hybrid model, utilizing straightforward annotation of daily activities and 
open databases to train a model for typical HAR and then an unsupervised Anomaly detection 
methodology to identify uncommon behaviours within specific activities. 

 

3.2.1 Anomaly Detection in HAR 
Anomaly detection (AD) is a data mining process which identifies data points, events, and/or 
observations that deviate from a dataset’s normal behaviour and typically occur rarely. Types of 
Anomalies can be separated to Point Anomalies, Pattern Anomalies, Change Points or Trend Anomalies. 
Anomalous data can indicate critical incidents, which may be interesting for many different reasons and 
detecting them can be a solution for a variety of problems. Machine learning is progressively being used 
to automate AD. Semi-supervised approaches to anomaly detection aim to utilize labelled samples, but 
most proposed methods are limited to including samples labelled as normal (Ruff et al., 2019).  

Unsupervised techniques that do not require manually annotated training data, presume that most 
samples are normal and only a small percentage of them is abnormally characterized by some statistical 
differentiation. Groups of frequent similar instances, based on these assumptions, are assumed to be 
normal and the infrequent data groups are categorized as malicious. The most popular unsupervised 
algorithms include K-means, Auto-encoders, PCA, GMMs, and hypothesis tests-based analysis 
(Thudumu et al., 2020). Auto-encoders, which found an explosive rise of interest in the recent years for 
many applications (Sakurada & Yairi, 2014), constitutes an unsupervised type neural network, mainly used 
for automated feature extraction and dimension reduction. An Auto-encoder consists of encoding and 
decoding parts. In the encoding part, main features are extracted representing the data’s patterns, and 
then each input sample is reconstructed in the decoding part. The final output must be recreated from the 
input and the reconstruction error must become as small as possible. 

Here we specifically investigate the Anomaly Detection amongst time series using a specially designed 
Autoencoder to automatically extract features from time-series data that have been already characterized 
as a particular daily activity.  We follow a hybrid deep anomaly detection process where a distance- based 
statistical technique is applied to the feature space to detect the anomalies. We take advantage of the non-
linear transformations that can be performed by the autoencoder using their non-linear activation 
function and multiple layers. 
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3.3 Proposed Methodology 

The proposed hybrid deep learning methodology can be summarised into the following steps: 

● Daily, recording of Accelerometer Signal in uncontrolled states. 
● Segmentation of the Time Series into Time Windows. 
● Classification of every Time Window, using a pre-trained 1D-CNN classifier, 

deciding which activity is currently performed. 
● Recovering small Time Periods, consisting of Sequential Time Windows characterized by 

confident predictions for each activity performed by every individual. 
● Automated feature extraction through a CNN Auto-encoder, deriving the feature vectors of each 

activity performed by every individual. 
● Utilising a statistical Anomaly Detection method on the feature space for outlier detection. 
● Incorporate the obtained information to complement the Behaviour Model. 

 

Notice that, besides the specialized equipment’ sensors, a smartphone’s accelerometer can be used. The 
mobile device can be placed preferentially somewhere near to the centre of gravity of an individual’s 
body, giving more accurate information for its movement. The use of mobiles has the advantages of 
practical use and wide availability, which subsequently provides the ability to generate a large-scale 
database, and develop robust generalized models. Given the sensor data, we perform a typical time series 
data preprocessing step, in order to train an 1D-CNN classifier utilizing data points of fixed size time 
windows. The time window length is set according to the minimum time-period, during which, physical 
activity can be performed. 

In practice, in order to test the quality and normality of the execution of those physical activities with the 
prospect of developing a human behaviour model, we only need a small daily sample for each of them. A 
good arbitrary selection of the duration of this sample is 2-3 minutes, as this seems to be long enough 
time for an abnormal pattern in an activity to appear (Hemmatpour et al., 2018). To this end, we only 
need to retrieve a sequence of time windows that belong to the same class (activity) according to our 
classifier. Preferable we want to minimize error rate for these particular samples, as such we threshold this 
sequence selection by requiring high prediction confidence. This way, we expect to avoid minor kinetic 
variations within the activity that would affect our anomaly detection process. 

At the next step, having secured a short time series for each daily activity and for each individual, we 
proceed to the anomaly detection process. Initially, for every activity we train a specialized Auto-Encoder 
to extract representative features. Then, the anomaly detection algorithm operates at the extracted feature 
space to identify individuals with uncommon behaviour.  
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Figure 1 The workflow of the proposed methodology 

 

3.4 Experimental Study and Results 

3.4.1 Data Description 
The dataset utilized here is the publicly available dataset, named “WISDM - Actitracker” (Lockhart et al., 
2011). The Actitracker dataset is the real-world equivalent of the WISDM dataset. It consists of tri-axial 
accelerometer data samples, recorded by an Android Smartphone, carried in the subjects’ front pocket. 
Gender and age balanced, 563 volunteer subjects performed a set of physical activities, in an uncontrolled 
environment, for specific periods of time. In all cases, the sampling rate of the accelerometer was 20Hz, 
collecting data every 50 ms, so there were 20 samples per second. The raw time series data resulted in 
1.098.207 samples, with a class distribution of  Walking: 424,400 (38.6%), Jogging: 342,177 (31.2%), 
Upstairs: 122,869 (11.2%), Downstairs: 100,427 (9.1%), Sitting: 59,939 (5.5%) and Standing: 48,395 
(4.4%). 

3.4.2 Activity Classification 
A crucial part of the proposed methodology constitutes the classification of the time-intervals signal 
samples, since the most representative ones will be used to produce the human activity feature. 
Convolutional Neural Networks (CNN) are state-of-the-art classification algorithms with high usage in 
the last years on signal classification tasks and problems of activity recognition from wearable sensors. 
CNN are multistage trainable architectures and used to classify human activity from accelerometer signal 
data. In order to classify the signal the proposed CNN utilize batches of raw accelerometer signals in the 
form of time windows with dimensions w × 3, where w corresponds to the number of (x, y, z) signal 
samples per time window. The model is trained using the three signal channels learns their local patterns 
applying a layer of convolutional operators, forwarding the discovered information to a feed-forward 
layer. The basic CNN components are the convolutional layers which are combined with a pooling layer 
functioned as a sub-sampler of their outputs, significantly reducing their dimension. The output of a 
convolutional layer produces ten feature maps. The information of feature maps is flattened and feed one 
fully connected layer with fifty neurons and then forwarded to the output layer with a number of neurons 
equal to the number for human activities. In the convolutional part of CNN to extract the local pattern 
among the three signal channels a 1-dimensional kernel with size three is deploy among channels, 
producing the aforementioned feature maps. In feed-forward part due to large values that some signals 
occurs (maybe from sensors falt) and in order to achieve convergence of the training process of the 
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model the sigmoid function is utilized on full-connected layer. Finally, the training of the model achieved 
by minimizing of the error function that is utilized on the last layer of the network. The differences 
between the network’s output for each specific input data and the original label of this data are 
propagated backward to the network, adjusting the connection weights at every iteration. The softmax 
loss function it is utilized as error function. 

Figure 2: An example of the prediction results with respect to the total acceleration.  
Red areas correspond to misclassification. 

 

In figure “Figure 2: An example of the prediction results with respect to the total acceleration.  

Red areas correspond to misclassification.” We observe an indicative example of the classification process. 
Red areas correspond to misclassifications. We observe that these mostly regards static activities. In 
“Figure 3: Confusion Matrix of the HAR process” we have a much clearer view observing the resulting 
confusion matrix for the full dataset. As shown the walking activity, which constitutes the majority class 
of the dataset has been accurately predicted. 

Figure 3: Confusion Matrix of the HAR process 

For this reason we continue our analysis emphasizing on the anomaly detection regarding the “walking” 
category. To this end we need to construct the time series for each individual from the walking class that 
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will be used to extract features in the next step. To ensure that there are enough samples that have been 
predicted with high accuracy we observe the following histogram where we conclude that this assumption 
holds. By setting threshold value for prediction confidence to 95% the classification accuracy for the 
walking classing is increasing from 85% to 94%. 

Figure 4: The prediction probability distribution for the "walking" class  
and the corresponding threshold utilized 

 
3.4.3 Feature Extraction 
The feature representation is produced by a non-linear semi-supervised method, the well-known 
AutoEncoder Convolutional Neural Networks (AE-CNN). AE-CNN is a type of CNN that does not 
require the labelling of data, and therefore it is an unsupervised learning algorithm. The aim is to learn an 
input function to reconstruct the input to an output of lower dimensions. Autoencoder approximates the 
identity function to make an output that is similar to the input of the network. Mathematically, 
considering x as an input, passing through a number of convolutional layers where the number of their 
feature maps is gradually decreasing, called encoder part, following a identical number of layer that 
operate the deconvolutional operator, called a decoder part, where the output tend to be similar to the 
input. The layer that enclose between the encoder and decode parts is the code source and it is represents 
the feature production, called also as feature representation, of encoding procedure of the network. The 
proposed AE-CNN consisted of two layers in encoding part with 80 and 40 feature maps with the first 
layer deploy 2-dimensional kernel size 3 × 3 and the second one an 1-dimensional with size 4. The output 
of the second layer mapping to the feature representation layer which consisted of ten dimensional 
neurons. The decode part of the networks consisted of the 2 deconvolutional layers with 40 and 80 
feature maps and the related to the encoded part kernel size and dimensions. 

 

 

 

3.4.4 Anomaly detection 
 

In this part of our anomaly detection analysis we utilize the produced matrix from the feature extraction 
step. Now our dataset 𝐴"

#   is constituted by the n individuals (samples) and the p extracted features for 
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each one of them. Keep in mind that this is a data matric constructed for the “walking” class specifically. 
To this end we are interested to visually investigate the data at hand and possible visually identify 
potential outliers. To achieve this we utilize two popular Dimensionality Reduction techniques, namely 
Principal Component Analysis (PCA) and t-SNE. The results are presented in the following figure. 

 

Figure 5: Two dimensional Visualizations of the extracted feature space (PCA left and tSNE right). 

 

As shown in both cases we are able to identify samples that are relatively different from the general 
population. At the PCA representation we observe isolated far away instances while for tSNE we observe 
a structure that can be identified as a separate minority cluster. 

In the next step, we focus our analysis upon a popular way to statistically identify and deal with 
multivariate outliers. Mahalanobis Distance (MD) calculates the distance of each case from the central 
mean. Larger values indicate that a case is farther from where most of the points cluster. In what follows, 
we calculate and visualized MDs versus the quantities of a chi-square.  

Figure 6: MDs versus the quantities of a chi-square for the extracted features 

As shown, most of the points appear to follow in line, but few don’t, while we observe a particular one 
being almost isolated in the upper right corner. We continue our analysis by employing a more formal test 
for outlier detection, utilizing a cut-off score for MD. We identify as outliers the observations that fall 
above the cut-off score for a chi-square test with p degrees of freedom, where p is the number of 
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variables. For the alpha value set to 0.01 we identify one outlying point. Not surprisingly, it’s the case with 
a huge MD relative to the others. Although, we could conclude our analysis here we take one step further 
since the author Leys et al. (2018) argue that MD is not a robust way to determine outliers. The problem 
lies with the fact that MD uses the means and covariances of all the data - including the outliers - and 
then the individual scores are calculated according to all these values. Since we are mostly interested in 
identifying cases that stray from the typical behavior, we decide to base the criteria for outlier detection 
using a subset of the data that is the most central. That is the code idea of the Minimum Covariance 
Determinant, which calculates the mean and covariance matrix based on the most central subset of the 
data. Here we employ this concept to calculate new distance scores from a 75% subset of the data that is 
highly central. We follow a similar approach for calculating the distance scores, and we use the same cut-
off score as before. We have now identified 13 outliers in contrast to the 1 identified with the traditional 
MD. To this end we may claim that the Minimum Covariance Determinant version of MD allowed as to 
identify outliers that would otherwise go unnoticed with traditional MD. 

 

4 OACTIVE Wearable sensors 
4.1 IMUs platforms 

During the second reporting period, following Oactive evolution, further requirements have been defined 
in order to collect the data necessary for building the behavioural model. Indeed, in the first phase the 
attention was more focused to analyse the relation between KOA and patient’s mobility. More in detail 
the aim was to observe how, KOA effect on patient’s capability to move, could affect consequently user 
habits and thus his/her behaviour. To collect such data, it has been considered useful to start with 
measuring sessions in a controlled environment, like a motion laboratory, and acquire data on patient’s 
gait and his lower limbs movement. For this reason, it has been designed and developed an integrated 
wearable platform, composed by 6 IMUs devices, capable  of providing high-resolution signals from 
human lower limbs (for details see D5.1). However, in a second phase it appeared essential to generate 
the behavioural model the opportunity to gather data from the patient for longer periods and directly 
during normal daily living activities in order to observe how KOA influences Patient’s habits and 
behaviour. To achieve this result, it has been necessary a supplement of activity in sensor development. 
Since task 5.1 was formally closed, this activity is reported in the following paragraphs. A second wearable 
system has been developed, based on the same technology of the integrated platform but composed of a 
single IMU device. This solution allows to collect, besides the raw data, also information on the posture, 
the intensity of the activity and step frequency of the subject who is wearing it. 
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For both versions the developed electronic board includes an IMU sensor (MPU 9250 by Invensense) 
with 9 DoF, an M3 micro-controller, Bluetooth transmission and a LiPo battery of 660 mAh. The case 
and package have been designed to optimize handling and comfort when worn. Different textile 
accessories, developed internally at Smartex, have been provided for easy don and doff of the devices. 

In the Oactive frame Smartex produced two different wearable systems: one designed for monitoring and 
acquire data in controlled situation (motion lab), and the second to be able to be used autonomously by 
the patient and capable to provide data from daily living activity in an uncontrolled environment. This 
approach allows  generating two complementary data set for the development of the behavioural model 
of OA patient: the first provides information on how OA affects patient’s movement, the second on how 
OA influences patient’s habits and behaviour. 

 

Figure 8: kit for integrated platform (left) kit developed for remote monitoring system (right) 

 

Following the outcomes of T5.1, during this reporting period it has been conducted a research to 
individuate a cost-effective alternative for the smart shoe described in D5.1. The sensorized insole 
produced by MOTICON has been considered the most suitable solution and has been purchased and 
provided to WP 7 partners. 

 

 

 

Figure 7: wearable sensors for behavioural model 
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4.1.1 Controlled condition monitoring: Integrated Platform for multiple devices acquisition  
 

In its former version, the integrated wearable platform for controlled condition monitoring was able to 
connect via Bluetooth to the host up to six IMU devices simultaneously with a sampling frequency of 100 
Hz (as described in D5.1). Several efforts have been applied to increase the connectivity of the integrated 
platform to expand the connectivity of the whole platform up to 8 devices. To achieve this result, indeed, 
it was necessary to overcome 2 main limits: the first one is due to the maximum number of Bluetooth 
connections to a single receiver. This limit is nominally 7, but test done during the development, showed 
that it was not possible to connect more than 6 devices without significant degradation of the 
performance of the system. This implies the necessity to use more than one Bluetooth dongle to connect 
further IMUs, but as second limit, Windows based systems do not allow the use of more than one 
Bluetooth receiver with the same functionality at the same time. To solve these issues it has been 
explored the possibility to use a Bluetooth hub exploiting a Linux based system (Raspberry Pi 3). This 
bridge device, connected via Ethernet socket to the central host (Windows PC) allows the connection of 
multiple Bluetooth dongles (2 Bluetooth adapters for Oactive) and the connection to 7+ devices. 
 

Figure 9: IMUs devices and the Raspberry Pi bridge 

Consequently the App has been updated to offer the possibility to select the receiver to which each device 
must connect. Moreover it has been completed also a revision of the app to correct some bugs identified 
in the version released in the previous reporting period. 

 
Figure 10:APP screenshot, is possible to see the option for connection to Rasberry Pi Bluetooth dongles 

Each device acquire data form IMU sensor (Quaternion, 3 Accelerometer, 3 Gyroscope,3 Magnetometer)  
with a sampling frequency (fs) of 100Hz. The data are saved on the local host, is possible to record up 8 
files per session ( one for each device) in the following format: 
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• timestamp_n*reg_prog_position_dev_name_device.bin 

• timestamp: year, month, day, hour minutes 

• n*reg_prog: serial number of session on PC 

• position_dev: position of the device on the human body 

• name_device: name label on bluotooth card 

Anyway, the introduction of this intermediate level, and the augmented complexity of the platform 
introduced serious issues to the stability and the reliability of the integrated platform. Due to Oactive 
requirements, reliability of the platform has been privileged and the platform has been released in its 6-
device version.  

 

4.1.2 Remote monitoring: single device acquisition 
 

The second line of study was dedicated to the development of a system capable to collect data and get 
measurements in a not-controlled environment. This class of devices has been considered necessary to 
extract features and information on patients’ behavior from observations and measurements taken 
directly at patient’s home during his daily living activities. The electronic is based on the same hardware 
developed for the “integrated system” with a sampling frequency reduced to 25 Hz in order to decrease 
power consumption. Data provided by the devices include data coming directly from the IMU (MPU 
9250 by Invensense), quaternion and raw signals from 3-axis accelerometer, 3-axis gyroscope, 3-axis 
magnetometer. Moreover, this version of the system provides a set of extrapolated parameters more 
linked to patients behaviour: activity classification (laying/standing, walking, running), activity intensity, 
pace counter. 
 

Figure 11:device for remote monitoring 

 
In normal conditions of use the system covers up to 8 hours of continuous recording in order to 
guarantee long measurement session. The data acquired are saved on an internal SD card and can be 
easily downloaded via USB for post-processing and offline analysis. The file are saved in a proprietary 
format to compress data and anonymize the information.  
The platform has been designed to facilitate as much as possible autonomous operation by the final user. 
The system is distributed in kit with two textile accessories of different size. 
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Four main steps are required: 

• Wear the device on the chest by the means of the elastic band provided with the system 
• Start recording 
• Stop recording at the end of measurement session 
• Put device on battery recharge 

Once completed the measurement sessions, an operator will get back the devices and proceed to collect 
the data acquired. 
A software suite has been provided to visualize the recorded sessions, download and convert data from    
proprietary format to CSV format.  

Figure 12: screenshot of the visualization software 

4.2 Sensorized Insole 

Following the outcomes of T5.1 Smartex agreed, with the other partners involved, to invest resources on 
the selection and purchase of a system to evaluate forces generated under feet. 

Research on products available on the market has been conducted and in close collaboration with WP7 
(UPAT)  

Figure 13: Moticon insoles and App (from www.moticon.de) 



OACTIVE –777159  SC1-PM-17-2017 

Deliverable D5.2 
 
 

Each insole includes: 

• 16 pressure sensors  

• 6-degree of freedom IMU  

• In factory calibration 

• Selectable sampling frequency from 10 to 100 Hz and  

• BLE transmission 

2 pairs of insoles have been purchased together with the Software Development Kit (SDK) and the 
sensors' mobile app. 

 

5 Conclusions 
Recent developments in wearable devices allow us to design specialized equipment for data retrieval and 
simultaneously utilize large public access databases. The accelerometer data that is most frequently 
retrieved can be used for Human Activity Recognition and through a Behavioral Modelling process, 
subsequently provide a solid basis for the prediction of future development of Osteoarthritis or even in 
the individual’s rehabilitation after a surgery for Osteoarthritis. Towards this direction, here we propose a 
complete framework able to extract information that can be critical in decision making regarding 
personalized knee Osteoarthritis prediction, activity recommendation for rehabilitation and many other 
Osteoarthritis related systems. The proposed framework is based on the utilization of state-of-the-art 
Machine Learning models for signal processing and Deep Hybrid Models for outlier detection suggesting 
a solid basis for further developments and wider applicability.  
The second part of the document describes the activity conducted in sensor development (started in 
T5.1). The research followed two main directions: improvement and the optimization of the integrated 
system for controlled condition monitoring, the development of a system for remote monitoring to be 
used autonomously by the OA patient. This strategy allows to provide two complementary datasets one 
capable to observe how KOA affects patient’s motility and consequently his habits and thus his 
behaviour, the second, obtained monitoring of the patient for longer periods directly during normal daily 
living activities, in order to observe how KOA influences Patient’s habits and behaviour. Several efforts 
have been applied to increase the connectivity of the integrated platform. to 8 devices simultaneously. A 
Bluetooth hub has been developed exploiting a Linux system (Raspberry Pi 3). The App has been 
updated to offer the possibility to select the receiver to which each device must connect. Anyway, the 
introduction of this intermediate level, and the augmented complexity of the platform introduced stability 
and reliability issues. Due to Oactive requirements, reliability of the platform has been privileged and the 
platform has been released in its 6-device version. A complete review of the app was performed to 
correct some bugs identified in the version released in the previous reporting period. To observe and 
measure patients’ behavior directly at patients’ home, a second class of wearable platform has been 
developed. The system, designed to facilitate as much as possible autonomous operation by the final user, 
provides raw data coming from the 9 DOF IMU (MPU 9250 by Invensense) plus quaternion, and data 
extrapolated, which are activity classification (laying/standing, walking, running), activity intensity, pace 
counter. In normal conditions of use the system can guarantee up to 8 hours of continuous recording. 
Data, saved on an internal SD card in proprietary format to compress and anonymize the information, 
can be visualized and converted by a software suite provided with the system 
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