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1.  Summary 

The first aim of this deliverable (Task 6.5) is to present the working prototypes of the personalised 
predictive OACTIVE models used either for prevention, diagnosis or even during the intervention stage. 

The rest of this deliverable is organised as follows. Section 2 gives an introduction about the OACTIVEs 
targets and the approaches, which are presented in this Deliverable (D6.5). In Section 3, the proposed 
methodologies about the prediction of Knee Osteoarthritis (KOA) progression are presented. Diagnosis 
approaches are given in Section 4. Personalized interpretable models are provided in Section 5. Conclusions 
and future work are finally drawn in Section 6. 

This report refers to Deliverable 6.5, which relates to the OACTIVE WP 6, “Hyper-modelling framework 
empowered by big data and deep learning” led by CERTH.  The objective of WP6 is to develop the hyper-
modelling framework of OACTIVE which will include: 1) data management mechanisms to ensure a high 
level of data quality and accessibility for the big data analytics applications 2) development of data pre-
processing algorithms to improve data quality and consequently facilitate the efficiency of the data mining 
task, 3) development of data mining techniques for knowledge discovery, 4) development of the ICT deep 
learning infrastructure, 5) design and implementation of personalized predictive models, 6) an ontology-
based framework for data standardization and 7) mechanisms for increased privacy and security. 

2.  Introduction 

OACTIVE prioritises the development of a number of computational efficient ‘local’ predictive/diagnostic 
models that address specific OA stages in the disease continuum of a patient. Advanced pattern recognition 
models will be employed to model the KOA disease onset and further progression. The training process of 
the models will be based on the significant risk factors recognized on the previous evaluation analysis 
(Identify step). The outcome will be the generation of different local personalised decision models for 
diagnosis and prediction of KOA progression. Various classification models generated in the previous task 
(such as logistic regression, decisions trees, support vector machines, and deep learning neural networks) 
investigated for their appropriateness in providing accurate and robust decisions. The best model will be 
selected to accomplish the complex problem of KOA diagnosis and severity assessment. Moreover, to 
analytically assess the information content of each risk factor family, the proposed model will be separately 
applied on every feature family. The final outcome (diagnosis) will be derived by applying fusion techniques 
on the individual decisions allowing bio-medical researchers to investigate the influence of environmental 
factors on OA occurrence and their interactions with other health factors.  

KOA is a multifactorial disease that causes low quality of life, poor psychology and resignation from life. 
Furthermore, KOA is a big data problem in terms of data complexity, heterogeneity and size as it has been 
commonly considered in the literature with most of the reported studies being limited in the amount of 
information they can adequately process. In this Deliverable, to cope with prediction of KOA progression 
in the first work, we propose a methodology (i) To provide a robust feature selection (FS) approach that 
could identify important risk factors which contribute to the prediction of KOA (Deliverable 6.3) and (ii) 
to develop machine learning (ML) prediction models for KOA. The current work considers 
multidisciplinary data from the osteoarthritis initiative (OAI) database, the available features of which come 
from heterogeneous sources such as questionnaire data, physical activity indexes, self-reported data about 
joint symptoms, disability and function as well as general health and physical exams’ data. The novelty of 
the proposed FS methodology lies on the combination of different well-known approaches including filter, 
wrapper and embedded techniques, whereas feature ranking is decided on the basis of a majority vote 
scheme to avoid bias. The validation of the selected factors was performed in data subgroups employing 
seven well-known classifiers in five different approaches.  
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In the second approach the main goal is to build a prognostic tool that will predict the progression of pain 
in KOA patients using data collected at baseline. For this task we investigated two different methodologies. 
Initially, in the first work we leverage a feature importance voting system (Deliverable 6.3) for identifying 
the most important risk factors and various machine learning algorithms to classify, whether a patient’s pain 
with KOA, will stabilize, increase or decrease. These models have been implemented on different 
combinations of feature subsets. The proposed methodology demonstrated unique potential in identifying 
pain progression at an early stage therefore improving future KOA prevention efforts. In the second work, 
the proposed methodology relies on an innovative evolutionary ML methodology capable of achieving 
state-of-the-art accuracy results. The prediction task is decomposed into local binary classification 
problems, which are treated separately with tailored ML models trained on selected feature subsets, whereas 
the final prediction is derived by fusing the outputs of these local models. The nature of the selected risk 
factors is discussed and the superiority of the proposed methodology is finally demonstrated compared to 
well-known ML algorithms.  

Furthermore, in the third task, two approaches are presented to predict the progression of knee joint space 
narrowing (JSN) in each knee and in both knees combined. A machine learning approach is proposed with 
the use of multidisciplinary data from the osteoarthritis initiative database. The proposed methodology 
employs: (i) A clustering process to identify groups of people with progressing and non-progressing JSN 
(Deliverable 6.3) (ii) a robust feature selection (FS) process consisting of filter, wrapper, and embedded 
techniques that identifies the most informative risk factors (Deliverable 6.3)  and (iii) a decision making 
process based on the evaluation and comparison of various classification algorithms towards the selection 
and development of the final predictive model for JSN.  

Finally, we worked to increase the generalization of the personalized prediction models. Specifically, this 
work contributes to the identification of risk factors for KOA progression via a robust feature selection 
(FS) methodology that overcomes two crucial challenges: (i) the observed high dimensionality and 
heterogeneity of the available data that are obtained from the Osteoarthritis Initiative (OAI) database and 
(ii) a severe class imbalance problem posed by the fact that the KOA progressors class is significantly 
smaller than the non-progressors’ class. The proposed feature selection methodology relies on a 
combination of evolutionary algorithms and machine learning (ML) models We investigated the 
effectiveness of the proposed approach in a comparative analysis with well-known FS techniques with 
respect to metrics related to both prediction accuracy and generalization capability. The proposed FS 
methodology may contribute to the development of new, efficient risk stratification strategies and 
identification of risk phenotypes of each KOA patient to enable appropriate interventions.  

On the other hand, to develop personalised diagnosis models, we worked on two different approaches. 
Initially, the aim of the first work is to provide a data mining approach that could identify important risk 
factors which contribute to the diagnosis of KOA. Data were obtained from the osteoarthritis initiative 
(OAI) database enrolling people, with non-symptomatic KOA and symptomatic KOA or being at high risk 
of developing KOA. The current work considered multidisciplinary data from heterogeneous sources such 
as questionnaire data, physical activity indexes, self-reported data about joint symptoms, disability and 
function as well as general health and physical exams’ data from individuals with or without KOA from the 
baseline visit. For the data mining part, a robust feature selection methodology was employed consisting of 
filter, wrapper and embedded techniques whereas feature ranking was decided on the basis of a majority 
vote scheme (Deliverable 6.3). The results are the basis for the development of easy-to-use diagnostic tools 
for clinicians for the early detection of KOA.  

Furthermore, KOA is the most common form of arthritis in the knee that comes with a variation in 
symptoms’ intensity, frequency and pattern. Knee OA (KOA) is often diagnosed using invasive and 
expensive methods that can measure changes in joint morphology and function. Early and accurate 
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identification of significant risk factors in clinical data is of vital importance in diagnosing KOA. A machine 
intelligence approach is proposed here to enable automated, non-invasive identification of risk factors from 
self-reported clinical data about joint symptoms, disability, function and general health. The proposed 
methodology was applied to recognize participants with symptomatic KOA or being at high risk of 
developing KOA in at least one knee. Different machine learning and deep learning algorithms were tested 
and compared in terms of multiple criteria e.g., accuracy, per class accuracy and execution time. Deep 
learning was proved to be the most effective in terms of accuracy with classification accuracies up to 
86.95%, evaluated on data from the osteoarthritis initiative study. Insights about ten different feature 
subsets and their effect on classification accuracy are provided. The proposed methodology was also 
demonstrated in subgroups defined by gender and age. The results suggest that machine intelligence and 
especially deep learning may facilitate clinical evaluation, monitoring and even prediction of knee 
osteoarthritis. Apart from the classical implementation of the proposed methodology, a quantum 
perspective is also discussed highlighting the future application of quantum computers in KOA diagnosis. 
 
Interpretable models provide decisions which are made with clarity and that the processes that go into 
making decisions about a person’s health are easily explainable to the patient and understood by doctors. 
For this task insights about the baseline presentation with and without clinical manifestation of 
osteoarthritis were derived from statistical and machine learning models. This produced models for 
diagnosis of KOA (radiological index KL 2+) and prognostic model for propensity to develop KOA within 
5 years of first presentation. Both models are displayed as app interfaces with nomograms for transparency 
and to enable scenario analysis for the effects of modifiable risk factors. 
  

3. Personalised Prediction of KOA progression 

Knee Osteoarthritis (KOA) is the most common type compared with other types of osteoarthritis (OA). 
KOA results from a complex interplay of constitutional and mechanical factors, including mechanical 
forces, local inflammation, joint integrity, biochemical processes and genetic predisposition. The specific 
disease causes significant problems when it occurs. In recent years, it has been also realized that KOA is 
closely associated with obesity and age [1]. Moreover, KOA is diagnosed in the young and athletes following 
older injuries [2]. The particularity of this disease is that the knee osteoarthritic process is gradual with a 
variation in symptoms intensity, frequency and pattern [3]. Due to the multifactorial nature of ΚΟΑ, disease 
pathophysiology is still poorly understood and prognosis prediction tools are under current investigation. 
Prognosis and treatment of KOA is a challenge for the scientific community. Increasing data collection has 
led to an increasing number of studies employing big data and AI analytics applied in the KOA research. 
As a result of this, several techniques have been reported in the literature in which ML models were used 
to predict KOA [4]. In 2017, Lazzarini et al. developed five (5) ML models that can be used to predict the 
incidence of knee OA in overweight and obese women. By integrating a wide variety of biomedical data in 
their models, they showed that using a small subset of the available information is possible to accurately 
predict the incidence of KOA by using Random Forest (RF) [5]. In another study, Halilaj et al. aimed to 
characterize different clusters of KOA progression and build models to predict these clusters early [6]. 
LASSO regression models were used to predict joint space narrowing and pain progression which are the 
most widely used surrogates of structural and symptomatic disease status. Furthermore, Pedoia et al. [7] 
used MRI and multidimensional biomechanics data attempting to meet the existing gap in multidimensional 
data analysis for precision medicine in KOA. They achieved large-scale integration of compositional 
imaging and skeletal biomechanics by using logistic regression as the ML model.  
 
In 2019, Abedin et al. built two different prediction models, which achieved comparable accuracy with the 
aforementioned studies. In this study elastic net and RF were used along with a convolution neural network. 
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The aim of this work was to explore whether the prediction accuracy of a statistical model based on the 
patient’s questionnaire data is comparable to the prediction accuracy based on X-ray image-based modeling 
to predict KOA severity [8]. In another study, in 2019 Nelson et al. applied innovative ML approaches (e.g., 
K- means, t-SNE), specialized for a high dimension, low sample size setting, to phenotyping in KOA in 
order to better define progression phenotypes that may be more homogeneous and responsive to potential 
disease modifying interventions [9]. Moreover, in 2019 Tiulpin et al. proposed a novel method based on 
ML that directly utilizes raw radiographic data, physical examination, patient’s medical history, 
anthropometric data and, optionally, a radiologist’s statement (Kellgren and Lawrence (KL)-grade) to 
predict structural KOA progression by using logistic regression and gradient boosting machine. They 
demonstrated that a knee X-ray image alone is already a very powerful source of data to predict whether a 
particular knee will have OA progression or not [10]. Futhermore, in the same year, Widera et al. used 
several ML models (e.g., logistic regression, K-nearest neighbor, SVC (linear kernel), SVC (RBF kernel) and 
RF) in combination with clinical data and X-ray image assessment metrics to develop predictive models for 
patient selection that outperform the conventional inclusion criteria used in clinical trials [11]. However, 
few studies have tried to apply ML models for the prediction of KOA. There is still a lack of knowledge on 
the contribution of self-reported clinical data on the KOA prognosis and their impact on the training of 
the associated ML predictive models [12–17]. 
 
According to our knowledge, identification of risk factors for developing and especially predicting KOA 
has been limited by an absence of non-invasive methods to inform clinical decision making and enable early 
detection of people who are most likely to progress to severe KOA. Hence, we worked on four approaches: 
(i) personalized prediction based on risk factors that are relevant with Kellgren-Lawrence (KL) progression, 
(ii) personalized prediction based on risk factors that are relevant with pain progression, (iii) personalized 
prediction based on risk factors that are relevant with joint space narrowing (JSN)) progression and (iv) 
increasing generalization using an evolutionary Machine Learning approach based on risk factors that are 
relevant with Kellgren-Lawrence (KL) progression. In the first approach, the main purpose is twofold: (i) 
The prediction of KOA through the identification of risk factors that are relevant with KL progression 
from a big pool of risk factors available in the osteoarthritis initiative (OAI) database and (ii) the 
development of machine learning-based models that can predict long-term KL progression. To accomplish 
the aforementioned targets, a robust ML pipeline that involves a hybrid feature selection technique and 
well-known ML models was implemented. Moreover, this work also explores three different options with 
respect to the time period within which data should be considered in order to reliably predict KOA 
progression. Finally, a discussion on the nature of the selected features is also provided.  
 
Subsequently, to cope with the purpose of the second task we investigated two approaches. The aim of the 
first approach is: (i) to identify different clusters of KOA pain progression, (ii) to identify informative 
parameters that are relevant with pain progression from a big pool of risk factors that are available in 
osteoarthritis initiative (OAI) database and (iii) to build ML models that can predict long-term pain 
progression using baseline data. To accomplish the aforementioned targets, we built a ML empowered 
methodology capable of achieving state-of-the-art accuracy results with the minimum possible number of 
features. By using a relatively small number of features, and at the same time not sacrificing test set 
performance, we can run the algorithm faster at inference time, and implement it in portable devices (e.g., 
a smartphone). The dataset, as described has 726 features. By reducing this number to a relatively small 
number features, for instance 25 we could create more possibilities for the implementation of an algorithm 
in a small mobile device; or test the algorithm faster in the subjects by requiring less computational power. 
In order to do this, we have developed a hybrid technique, in which we derive the feature importance from 
different Feature Selection (FS) algorithms via a common voting system. Afterwards, we explored the 
suitability of different ML algorithms in an extensive comparative experimentation, to distinguish the one 
that produces the best results for our prediction. The aim of the other one is: (i) the identification of 
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different clusters of KOA pain progression, (ii) the selection of informative and robust parameters that are 
relevant with pain progression and (iii) the development of AI-powered predictive models that could be 
used for patient-specific prediction of pain progression. To accomplish the aforementioned targets, we rely 
on an innovative evolutionary ML methodology capable of achieving state-of-the-art accuracy results. One 
of the novelties of the proposed methodology is that the prediction task has been decomposed into local 
binary classification problems. Each of the local problems is treated separately (with custom ML models 
trained on selected feature subsets) and the final prediction is derived by fusing the outputs of these local 
models. The nature of the selected risk factors is discussed and the superiority of the proposed methodology 
over well-known ML algorithms is also demonstrated. 
 
 The third approach aims towards the accurate prediction of JSN on Medial compartment (JSM) 
progression via the development of a novel machine learning approach. This ML approach handles the 
heterogeneity among a plethora of features (725) deriving from various feature categories, including 
diagnosis from medical examination and medical imaging outcomes, among others. In this work the 
effectiveness of two strategies is investigated for predicting the JSN progression of KOA patients by: (i) 
Developing predictive models that are trained on data from the left knee and right knee separately and (ii) 
developing predictive models that combine KOA patients’ data for both the right and left knee. For each 
strategy the same steps were followed. Initially, a clustering approach is applied for the identification of 
patients groups with and without JSN progression. Then the risk factors are identified based on a voting 
scheme that incorporates various categories of feature selection techniques. The prediction stage was 
implemented with the use of well-known ML models in an extensive comparative experimentation. End, 
the fourth work increasing generalization using an evolutionary Machine Learning approach based on risk 
factors that are relevant with Kellgren-Lawrence (KL) progression. Hence, we propose an FS technique 
that incorporates a number of characteristics towards the identification of robust risk factors that generalize 
well over the whole dataset. The proposed FS methodology, termed GenWrapper in this work, is an 
evolutionary genetic algorithm (GA)-based wrapper technique that differentiates from the classical GA-
based FS techniques in terms of the following: (i) GenWrapper applies random under-sampling at each 
individual solution, forcing the GA to converge to solutions (feature subsets) that generalize well regardless 
of the applied data sampling; (ii) It ranks features with respect to the number of times that they have been 
selected in all the individual solutions for the final population. The combined effect of the aforementioned 
GenWrapper characteristics leads to selected features that consistently work well at any possible data sample 
and, thus, have increased generalization capacity with respect to KOA progression. An extensive 
comparative analysis has been performed to prove the superiority of GenWrapper over well-known FS 
algorithms with respect to both prediction accuracy and generalization. 
 
3.1 Personalised Prediction of KL progression  

Data description 

Data were obtained from the osteoarthritis initiative (OAI) database (available upon request at 
https://nda.nih.gov/oai/). Specifically, the current work only includes clinical data from: (i) The baseline; 
(ii) the first follow up visit at month 12 and (iii) the next follow up visit at month 24 from all individuals 
being at high risk to develop KOA or without KOA. Eight feature categories were considered as possible 
risk factors for the prediction of KL as shown in Table 1. Furthermore, our work was based on Kellgren 
and Lawrence (KL) grade as the main indicator for assessing the clinical status of the participants. 
Specifically, the variables ‘V99ERXIOA’ and ‘V99ELXIOA’ were used to assign participants into 
subgroups (classes) of participants whose KOA status progresses or not (during labelling process).  

Table 1. Main categories of the feature subsets considered in this work. 
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 Timeline of Visit 

Category Description Baseline 12 
Months 

24 
Months 

Subject 
characteristics 

Anthropometric parameters including height, 
weight, BMI, abdominal circumference, etc. 

● ● ● 

Behavioural Participants’ social behaviour and quality level of 
daily routine 

● ● ● 

Medical history 
Questionnaire data regarding a Participant’s 
arthritis-related and general health histories and 
medications 

● - - 

Medical imaging 
outcome 

Medical imaging outcomes (e.g., osteophytes and 
joint space narrowing) 

● - - 

Nutrition 
Block Food 
Frequency questionnaire ● - - 

Physical activity 
Questionnaire results regarding leisure activities, 
etc. 

● ● ● 

Physical exam 
Physical measurements of participants, including 
isometric strength, knee and hand exams, 
walking tests and other performance measures 

● ● ● 

Symptoms 
Arthritis symptoms and general arthritis or 
health-related function and disability ● ● ● 

As described in Deliverable 6.3, we consider KL grades prediction as a two-class classification 
problem. Specifically, the participants of the study were divided into two groups:  

Ø Non-progressors: Healthy participants (KL grade 0 or 1) that remained healthy throughout 
the whole duration of the OAI study (eight years) and  

Ø (2) KOA progressors: Healthy participants who developed OA (KL > 1) during the curse of 
the OAI study.  

Hence, the main objective of this work is to build ML models that could discriminate the two 
aforementioned groups and therefore be able to decide whether a new testing sample (healthy participant) 
will develop OA (assigned in the progressors’ class) or not (assigned to the non-progressors’ class). 
Secondary objectives of the work are to: (i) Identify which of the available risk factors contribute more to 
the classification output and as result can be considered as contributing factors in the prediction of OA and 
(ii) explore three different options (a single visit, two visits within a year and two visits within two years) 
with respect to the time period within which data should be considered in order to reliably predict KOA 
progression. To achieve these targets, we have worked on five different approaches in which different data 
subsets were considered comprising features from the baseline combined (or not) with features from visits 
1 (at month 12) and 2 (month 24). The motivation behind this is to investigate whether data from the 
baseline are sufficient to predict the progression of KOA or additional data from subsequent visits should 
be also included in the training to increase the predictive accuracy of the proposed techniques. Data 
resampling was applied at each of the five datasets to cope with the problem of class size imbalance and 
generate dataset in which classes are represented by an equal number of samples. 

A short overview through visualization of the aforementioned data subsets investigated in this research 
work is given in what follows. 
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• Dataset A (FS1): Progressors vs non-progressors using data from the baseline visit. This dataset only 
contains data from the baseline (724 features). After data resampling, the participants were divided into 
two equal categories (Figure 1), as follows:  
 

 
Figure 1. Flow chart of study design for dataset A. 

• Dataset B (FS2): Progressors vs non-progressors using progression data within the first 12 months. 
Dataset B contains data that declares the features’ progression within the first 12 months. Specifically, 
after data resampling, the following two classes of participants were created (Figure 2), as follows: 



 10 

 
Figure 2. Flow chart of study design for dataset B. 

• Dataset C (FS3): Progressors vs non-progressors using progression data within the first 24 
months. Dataset C contains data that declares the features’ progression within the first 24 months 
(until visit 2). The participants were divided into two equal categories (Figure 3), as follows: 
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Figure 3. Flow chart of study design for dataset C. 

• Dataset D (FS4): Progressors vs non-progressors using data from the baseline visit along with 
progression data within the first 12 months. After the application of data sampling, the 
participants were divided into two equal categories (Figure 4), as follows: 
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Figure 4. Flow chart of study design for dataset D. 

• Dataset E (FS5): Progressors vs non-progressors using data from the baseline visit along with 
progression data within the first 24 months. Similarly, participants were divided into two equal 
categories (Figure 5), as follows: 
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Figure 5. Flow chart of study design for dataset E. 

Methodology 
The proposed in this work ML methodology for KOA prediction includes four processing steps: (1) data 
pre-processing of the collected clinical data (Deliverable 6.3), (2) feature selection using the proposed 
approach (Deliverable 6.3), (3) learning process via the use of well-known ML models and (4) evaluation 
of the classification results. More details about the proposed methodology are presented in the following 
sections. 
 
Pre-Processing and  Feature Selection (FS) 
The steps of the proposed methodology have described in Deliverable 6.3. 
 
Learning Process 
Various ML models were evaluated for their suitability in the task of KOA prediction. A brief description 
of these models is given below.  
We tested logistic regression [18] which is likely the most commonly used algorithm for solving 
classification problems. Logistic regression models the probabilities for classification problems with two 
possible outcomes. It’s an extension of the linear regression model for classification problems. The 
interpretation of the weights in logistic regression differs from the interpretation of the weights in linear 
regression, since the outcome in logistic regression is a probability between 0 and 1. We also evaluated 
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decision trees (DTs) [19] which are a non-parametric supervised learning method used for classification 
and regression. They are simple to understand and to interpret. DTs require little data preparation and 
perform well even if their assumptions are somewhat violated by the true model from which the data were 
generated.  
K-Nearest Neighbor (KNN) [20] as well as non-linear support vector machines (SVM) algorithms [21], 
which can deal with the overfitting problems that appear in high-dimensional spaces. In the classification 
setting, the KNN algorithm essentially boils down to forming a majority vote between the K most similar 
instances to a given “unseen” observation. Similarity is defined according to a distance metric between two 
data points. A popular one is the Euclidean distance method. Furthermore, SVMs are a set of supervised 
learning methods used for classification, regression and outlier’s detection. They are effective in high 
dimensional spaces and still effective in cases where the number of dimensions is greater than the number 
of samples. 
The ensemble technique Random Forest (RF) [22] was also evaluated using DT models as weak learners. 
RF classifier creates a set of decision trees from randomly selected subsets of training set. It then aggregates 
the votes from different decision trees to decide the final class of the test object. XGboost [23] and naive 
Bayes [24] algorithms were also considered. XGboost model is a sum of CART (tree) learners which try to 
minimize the log loss objective and the scores at leaves. These scores are actually the weights that have a 
meaning as a sum across all the trees of the model. Furthermore, they are always adjusted in order to 
minimize the loss. Moreover, naive Bayes methods are a set of supervised learning algorithms based on 
applying Bayes’ theorem with the “naive” assumption of conditional independence between every pair of 
features given the value of the class variable. Naive Bayes learners and classifiers can be extremely fast. The 
decoupling of the class conditional feature distributions means that each distribution can be independently 
estimated as a one-dimensional distribution. 
Hyperparameter selection was implemented to optimize the performance of our models and to avoid 
overfitting and bias errors. Each model was optimized with respect to a number of preselected 
hyperparameters (Table 2). Specifically (i) ‘gamma’: [0,0.4,0.5,0.6], ‘maximal depth’: [1,2,3,4,5,6,7,8], 
‘minimum child and weight’: [1,3,4,5,6,8] were optimized for XGboost, (ii) ‘criterion’: [‘gini’, ’entropy’], 
‘minimum samples leaf’: [1,2,3], ‘minimum samples split’: [3,4,5,6,7] and ‘number of estimators’: 
[10,15,20,25,30] for random forest, (iii) ‘maximal features’: [‘auto’, ‘sqrt’, ‘log2’], ‘minimum samples leafs’: 
[1,2,3,4,5,6,7,8,9,10,11] and ‘minimum number of decision splits’: [2,3,4,5,6,7,8,9,10,11,12,13,14,15] for 
decision trees, (iv) ‘C’: [0.001,0.01,0.1,1,2,3,4,5,6,7,8,9,10] and ‘kernel’: [‘linear’,’sigmoid’,’rbf’,’poly’] for 
SVMs, (v) ‘k-parameter’: [5,7,9,12,14,15,16,17] for KNN and (vi) ‘penalty’: [‘l1’, ‘l2’] and ‘C’: [100, 10, 1.0, 
0.1, 0.01] for logistic regression. 

Table 2. Hyperparameters description. 

ML Models Hyperparameters Description 

XGboost 

Gamma Minimum loss reduction required to make a further partition on 
a leaf node of the tree. 

Maximal depth 
Maximum depth of a tree. Increasing this value will make the 
model more complex and more likely to overfit. 

Minimum child and 
Weight 

Minimum sum of instance weight (hessian) needed in a child. If 
the tree partition step results in a leaf node with the sum of 
instance weight less than min_child_weight, then the building 
process will give up further partitioning. 

Random 
Forest 

Criterion The function to measure the quality of a split.  
Minimum samples 
leaf 

The minimum number of samples required to be at a leaf node. 
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Number of 
estimators The number of trees in the forest. 

Decision 
Trees 

Maximal features The number of features to consider when looking for the best 
split. 

Minimum samples 
split 

The minimum number of samples required to split an internal 
node 

Minimum number of 
leafs The minimum number of samples required to be at a leaf node. 

SVMs 
C Regularization parameter. The strength of the regularization is 

inversely proportional to C. 
Kernel Specifies the kernel type to be used in the algorithm. 

KNN k-parameter Number of neighbors to use by default for k neighbors queries. 
Logistic 
Regression 

Penalty Used to specify the norm used in the penalization. 
C Inverse of regularization strength; must be a positive float. 

 
Validation 
A hold out 70–30% random data split was applied to generate the training and testing subsets, respectively. 
Learning of the ML was performed on the stratified version of the training sets and the final performance 
was estimated on the testing sets.  
Results 
In this section, we present the most important risk factors as they have been selected by the proposed 
hybrid FS methodology. Moreover, the overall performance of the models is presented in relation to the 
number of selected features and then reference is made to the models with the highest accuracies. Results 
are initially given per dataset and an overall assessment is provided at the end. The efficacy of the proposed 
FS methodology is also compared with the performance of the six individual FS criteria. 
 
Prediction Performance 
The proposed ML methodology was applied on each of the five datasets. Specifically, the proposed FS was 
executed on the pre-processed versions of the datasets ranking the available features with respect to their 
relevance with the progression of OA. Then the proposed ML models were trained on feature subsets of 
increasing dimensionality (with a step of 5). These feature subsets were generated by sorting the features 
according to the selected ranking. This means that the proposed ML models were trained to classify KOA 
progressors and non-progressors based on the first (5, 10, 15, etc.) most informative features and the testing 
classification accuracies were finally calculated until the full feature set has been tested. The classification 
results on the five datasets are given below.  

• Dataset A 
Figure 6 depicts the testing performance (%) of the competing ML models with respect to the number of 
selected features for dataset A. In particular, DTs failed in this task, recording low testing performances (in 
the range of 42.44–65.85%). In contrast, the other models had an upward trend in the first 20–60 features, 
followed by a steady testing performance in most of the cases. Specifically, the logistic regression model 
showed an upward trend with respect to selected features in the first 30–50 features, with a maximum of 
71.71% at 50 features (which was the overall best performer). The inclusion of additional features led to a 
small reduction in the accuracies achieved. 
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Figure 6. Learning curves with testing accuracy scores on dataset A for different machine learning (ML) 

models trained on feature subsets of increasing dimensionality. 

• Dataset B 
Figure 7 demonstrates the testing performance (%) of the competing ML models with respect to the 
number of selected features for dataset B. The following remarks could be extracted from Figure 8: (i) 
Considerably lower accuracies were achieved by all the competing ML models compared to the ones 
received in dataset A; (ii) LR and NB gave the maximum testing performance of approximately 64% at 25 
features (which was the overall best performer in dataset B). The addition of more features did not increase 
the testing performance of the model but led to a reduction in the accuracies achieved. (iii) Low testing 
performances were accomplished by the rest of the ML models (in the range of 42.24–62.11%).  
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Figure 7. Learning curves with testing accuracy scores on dataset B for different ML models trained on feature 
subsets of increasing dimensionality. 

• Dataset C 
Less informative features with small generalization capacity are contained in dataset C, as reported in Figure 
8. Unlike the previous two datasets, the best testing performance for dataset C was received at 225 features 
using DTs (66.67%). In general, unstable and low testing performances were observed for the majority of 
the employed ML models. The second highest accuracy was received for SVM (65.28%), whereas lower 
accuracies were obtained by the rest of the models. A significant number of features (more than 100) was 
also required in five out of the seven FS approaches highlighting the inability of dataset C features to 
provide useful information for the progression of KOA. 

 
Figure 8. Learning curves with testing accuracy scores on dataset C for different ML models trained on feature 

subsets of increasing dimensionality. 

• Dataset D 
The combination of datasets A and B proved to be beneficial in the task of predicting KOA progression. 
Specifically, the following conclusions are drawn from the results reported in Figure 9: (i) The best 
performance (74.07%) was achieved by the SVM on the group of the fifty-five selected risk factors with 
linear kernel penalty and C = 0.1 (Dataset D). (ii) The second highest accuracy was received for the logistic 
regression (72.84%), whereas lower accuracies were obtained by the rest of the models. (iii) SVM and LR 
followed a similar progression in the reported accuracies with respect to the number of selected features 
with an upward trend in the first 20–55 features, followed by a slight performance decrease as the number 
of features increases. (iv) KNN gave moderate results with a maximum testing performance of 71.6% at 75 
selected features. (v) Low testing accuracies were obtained by RF, XGboost and DT in the range of 42.59–
66.67%. 

• Dataset E 
In dataset E, the SVM-based approach exhibited an upward trend with respect to selected features in the 
first 20–70 features, with a maximum of 71.81% at 70 features (which was the best in the category). The 
inclusion of additional features led to a small reduction in the accuracies achieved (Figure 10). Similarly to 
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SVM, LR gave the second highest accuracy (71.14%) for less features (55). XGboost also gave a comparable 
performance (70.47%) in a subset of 45 selected features. Lower testing accuracies were received by the 
rest of ML models. 

 
Figure 9. Learning curves with testing accuracy scores on dataset D for different ML models trained on feature 

subsets of increasing dimensionality. 
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Figure 10. Learning curves with testing accuracy scores on dataset E for different ML models trained on feature 

subsets of increasing dimensionality. 

Selected Features 
 

 
 
Figure 11. Features selected in datasets A to E in (a–e), respectively. Axis y (selection criterion) denotes how many times 
a feature has been selected (6 declares that a specific feature has been selected by all six FS techniques and so on). Features 
have been ranked based on the selection criterion Vj and are visualised with different colors each one representing a specific 

feature category. 
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Figure 11 shows the first 70 features selected by the proposed FS approach for datasets A to E. Features 
are visualised with different colors and marks depending on the feature category they belong. The following 
conclusions could be drawn from the analysis of Figure 12: (i) Symptoms and medical imaging outcomes 
seem to be the most informative feature categories in dataset D in which the overall best performance was 
achieved. Specifically, eleven medical history outcomes and ten symptoms were selected in the first 55 
features that gave the optimum prediction accuracy; (ii) nutrition and medical history characteristics were 
also proved to be contributing risk factors since approximately 20 out of the first selected 55 features were 
from these two feature categories (in dataset D). The full list of selected features for dataset D is provided 
in the appendix; (iii) similar results with respect to the selected features were extracted from the analyses in 
datasets A and E (in Figure 12 a, e) that gave comparative prediction results (close to 72%); (iv) a different 
order in the selected features was observed in datasets B and C (as depicted in Figure 12 b, c). The low 
accuracies recorded in these datasets (less than 67%) verify that the contained in these datasets features are 
less informative; (v) overall, it was concluded that a combination of heterogeneous features coming from 
almost all feature categories is needed to predict KL progression highlighting the necessity of adopting a 
multi-parametric approach that could handle the complexity of the available data. 

Discussion of results 

This work focuses on the development of a ML-empowered methodology for KL grades prediction in 
healthy participants. The prediction task has been coped as a two-class classification problem where the 
participants of the study were divided into two groups (KOA progressors and non-progressors). Various 
ML models were employed to perform the binary classification task (KOA progressors versus non-
progressors) where accuracies up to 74.07% (Dataset D) were achieved. Within the secondary objectives of 
the work were to identify informative risk factors from a big pool of available features that contribute more 
to the classification output (KOA prediction). Moreover, we explored different options with respect to the 
time period within which data should be considered in order to reliably predict KOA progression.  
Three different options were investigated as far as the time period within which data should be considered 
in order to reliably predict KOA progression. To accomplish this, we worked with 5 different datasets. We 
first examined whether baseline data (dataset A) could solely contribute in predicting KOA progression. 
Going one step further, the features ‘progression within the first 12 months or 24 months was also 
considered as an alternative source of information (datasets B and C). The aforementioned analysis in 
Section 4 revealed that: (i) a 71.71% prediction performance can be achieved using features from the 
baseline, (ii) features’ progression cannot solely provide reliable KOA predictions and (iii) a combination 
of features is required to maximize the prediction capability of the proposed methodology. Specifically, the 
overall best accuracy (74.07%) was obtained by combining datasets A and B that contain features from the 
baseline visit along with their progression over the next 12 months. Considering a longer period of time 
(24 months) in the calculation of features’ progression resulted to lower prediction accuracies (71.81%).  
The proposed FS methodology outperformed six well-known FS techniques achieving the best tradeoff 
between prediction accuracy and dimensionality reduction. From the pool of approximately 700 features 
of the OAI dataset, fifty-five were finally selected in this work to predict KOA. As far as the nature of the 
selected features, it was concluded that symptoms, medical imaging outcomes, nutrition and medical history 
are the most important risk factors contributing considerably to the KOA prediction. However, it was also 
extracted that a combination of heterogeneous features coming from almost all feature categories is needed 
to effectively predict KL progression.  
Seven ML algorithms were evaluated for their suitability in implementing the prediction task. Table 7 with 
the summary of all reporting result indicates that LR and SVM were proved to be the best performing 
models. The good performance of SVM could be attributed to the fact that SVM models are particularly 
well suited for classifying small or medium-sized complex datasets (both in terms of data size and 
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dimensionality). LR was the second-best performer providing the highest prediction accuracy in datasets A 
and B and the second highest in datasets D and E. The fact that a generalized linear model such as LR 
accomplishes high performances indicates that the power of the proposed methodology lies on the effective 
and robust mechanism of selecting important risk factors and not so much on the complexity of the finally 
employed classifier. Identifying important features from the pool of heterogeneous health-related 
parameters (including anthropometrics, medical history, exams, medical outcomes, etc.) that are available 
nowadays is a key to increase our understanding of the KOA progression and therefore to provide robust 
prediction tools.  
 
3.2 Personalised Prediction of Pain progression 

1st Approach:  
Dataset description 
Data from the OAI database was used in this work in order to validate our approach. This database was 
designed for 2 specific reasons:(i) to identify the factors that cause KOA, (ii) to promote the research in the 
area of KOA, which is going to create a better quality of life for patients with KOA. The OAI database was 
launched in 2002, and its data is from patients in the ages 45-79 years old, either with symptomatic KOA, 
or being on the verge of developing it, in at least one knee. The study that produced this database had taken 
place in four medical centers in the US. In total 4796 patients were enrolled in the study, which lasted for 
8 years. The most significant thing about this database is that it had a more than 90% follow up for the first 
4 years. In this work though, we have not used all of the features. We have developed a voting system for 
assessing feature importance using only baseline data. WOMAC pain data from the first four visits was 
utilized to identify the different clusters of pain progression, whereas the selected feature subsets, as 
generated by the application of proposed FS methodology on baseline features, were used to train the ML 
models and finally produce the predictions. 
 
Methodology 
The proposed, in this work methodology, comprises of the following components: (i) a fitting technique 
for grouping/ labeling of the data, (ii) a hybrid and robust Feature Selection technique employing a number 
of feature ranking algorithms to avoid bias, (iii) Machine Learning models for decision making and (iv) 
Validation. 
 
Grouping/Labeling, Data Pre-Processing and Feature Selection 
 
As described in Deliverable 6.3 the available data was grouped into three clusters, each one representing a 
different pain progression condition:1) cluster 1: pain decline, 2) cluster 2: no significant pain change and 
3) cluster 3: pain increase. Furthermore, we applied the data pre-processing steps and the hybrid feature 
selection methodology, which have described in Deliverable 6.3.  
 
 
Machine Learning Algorithms 
Six (6) Machine Learning models were explored for their suitability in predicting pain progression on feature 
subsets of varying dimensionality, in order to see which one produces the best results. In this subsection 
we give a brief overview of the models that were employed in order to tackle the pain prediction problem. 
 
1) Decision Trees: Decision Tree [25] is one of the most famous algorithms for supervised learning for 
classification problems. It uses a lot of if-then-else decision rule statements in order to come to a decision. 
Its structure is a branch structure which breaks the data into data subsets, and then it produces decision 
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and leaf nodes. Every node has a minimum of two branches, and every leaf node is for classification or a 
decision prediction. 
 
2) k Nearest Neighbors: k Nearest Neighbors (kNN) [26] is a non-parametric, lazy learning algorithm. The 
classification prediction of a sample datapoint, is achieved with the use of data, which are class-separated. 
The algorithm presumes that similar datapoints are close to each other. More specifically, this algorithm 
loops over every datapoint in the data and calculates the distance between every datapoint and the chosen 
datapoint. The distances are sorted in an ascending order and then the algorithm chooses the first k entries. 
 
3) Support Vector Machines: Support Vector Machines (SVM) [27] is an algorithm which finds a line that 
separates the datapoints, that belong to different classes. The datapoints that are closest to the line play a 
crucial role in the learning process e (the so-called support vectors). Then the distance between the line and 
every datapoint is calculated, with an overall target to maximize the distance between classes. In case a non-
linear separation is needed, kernels are applied in order to project the datapoints into higher dimensional 
spaces. 
 
4) Random Forest: Random Forest is an algorithm consisted of many decision trees algorithms [28]. Its 
characteristics are the randomness in the sampling of datapoints when building the trees; and the 
randomness in the feature’s subsets, when splitting nodes. Every tree in the algorithm learns from a random 
sample of data. These samples of data are being used several times by the trees, which means that the trees 
take them with replacement. So, every tree has high variance because of this fact, but the random forest has 
lower variance in overall. It is worth noting that the decisions are the average of the predictions of all the 
trees in the random forest. 
 
5) XGBoost: XGBoost or eXtreme Gradient Boosting [29], is a parallel tree boosting that solves data 
science problems in a fast and accurate way. After constructing the boosted trees the algorithm calculates 
the importance score of every feature of the dataset. This score is an indicator of how useful is its feature 
to the construction of the trees inside the algorithm. The calculation of this score is achieved by the amount 
that each feature point split improves the performance for the model for the data that the node is 
responsible for. A popular measure of performance is the Gini index which selects the split points. More 
specifically the Gini coefficient is a statistic which quantifies the amount of inequality that exists in a 
population. It is a number between 0 and 1, with 0 representing perfect equality and 1 perfect inequality. 
XGBoost in fact ranks the features of the data by comparing them to each other. 
 
6) Naive Bayes: Naive Bayes is a probabilistic classifier that uses the Maximum A Posteriori decision rule 
in a Bayesian setting and is included in supervised learning [30]. The main idea behind this method is the 
Bayes Theorem. Bayes theorem approximates the probability of an event given the probability of a past 
event. The Naive Bayes predicts membership of probabilities for every class, such as the probability that 
the given data point belongs to a particular class. The data point belongs to the class with the highest 
probability score. 
 
Validation 
We validated the results by performing a 70%-30% train-test split. Learning of the algorithms was achieved 
on the stratified version of the train and the final performance was calculated on the test data. 
 
Results 
Tables 10 and 13 present the feature ranking exploration of the first 10 Features of the whole dataset for 
the left and the right knee, respectively. The feature ranking was decided on the basis of a majority vote 
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scheme by using the proposed feature selection methodology, as discussed in Deliverable 6.3. We also note, 
that features related to symptoms were selected. 
 
A. Results on Left Leg 
1) Feature Selection Results: Table 3 shows in order of importance the features for the left knee after the 
FS implementation. It was noted that the features that occupied the first positions, concern self-reported 
data about pain, difficulties in daily life and quality of life in knee-related functions. The following features 
were selected due to the direct correlation of these symptoms with the presence or imminent development 
of KOA, a finding that emerges from the literature survey. We can observe that these features are directly 
related to pain on the left leg. 
 
Table 3. Most important features for the left leg 
 

Features  Description 
V00WPLKN5 Left knee pain: standing, last 7 days 
V00WPLKN4 Left knee pain: sit or lie down, last 7 days 
V00WPLKN3 Left knee pain: in bed, last 7 days 
V00WPLKN2 Left knee pain: stairs, last 7 days 
V00WPLKN1 Left knee pain: walking, last 7 days 
V00WOMKPL Left knee: WOMAC Pain Score 
V00P7LKFR Left knee pain: how often 
V00KQOL4 Quality of life: how much difficulty with knee(s) 

V00DIRKN7 Right knee difficulty: in car/out of car, last 7 days 

V00DILKN6 Left knee difficulty: walking, last 7 days 
 
2) Performance: Table 4 cites the results of various algorithms applied on different combinations of feature 
subsets as they have been ordered by the proposed FS methodology. It was observed that RF achieved the 
best accuracy score, which is 84.3% at the first 25 features, whereas the inclusion of additional features led 
to a progressive decline in the accuracies achieved. The rest of the ML models achieved inferior results, 
with SVM producing the second-best results with 80.83% accuracy score. In overall, as we add more 
features to the aforementioned models, we observe that their accuracy scores decrease. 
 
Table 4. Left leg: features and model accuracy scores (%) 

Features DT KNN NB Rf SVM XGB 
5 64.46 57.02 70.25 71.07 66.12 63.64 
10 71.9 71.07 73.55 79.34 73.55 74.38 
15 71.9 76.86 76.03 77.69 75.21 80.99 
20 71.9 76.86 73.55 81.82 72.73 83.47 
25 66.94 79.34 69.42 84.3 78.51 80.99 
50 68.6 69.42 71.07 75.21 78.51 74.38 
100 73.55 73.55 69.42 76.86 78.51 83.47 
150 67.77 67.77 68.6 78.51 76.86 79.34 
200 58.68 67.77 71.9 76.03 78.51 77.69 
250 61.16 71.9 65.29 74.38 76.86 76.86 
300 67.77 66.12 61.16 75.21 81.82 79.34 
350 64.46 61.16 63.64 76.03 76.86 76.03 
400 60.33 61.98 62.81 74.38 75.21 76.03 
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450 56.2 66.12 61.98 79.34 78.51 77.69 
500 58.68 58.68 62.81 69.42 77.69 76.86 
550 61.98 64.46 62.81 77.69 76.86 75.21 
600 55.37 63.64 60.33 76.86 71.07 75.21 
650 61.98 61.98 58.68 72.73 74.38 73.55 
700 50.41 56.2 58.68 70.25 72.73 76.03 
750 74.38 60.33 58.68 71.9 71.9 75.21 

 
 
B. Results on Right Leg 
1) Feature Selection Results: Table 5 depicts in order of importance the features for the right knee after the 
FS implementation. It was observed that 7 out of the 10 first selected features were the same with the ones 
selected for the left leg. This finding indicated the selected features that lead to the prediction of KOA for 
each leg have uniformity and mainly concern self-reported data on pain, stiffness and quality of life. 
 
Table 5.  Most important features for the right leg 
 

Features  Description 
V00P7RKFR Right knee pain: how often 
V00WPRKN5 Right knee pain: standing, last 7 days 
V00WPRKN4 Right knee pain: sit or lie down, last 7 days 
V00WPRKN3 Right knee pain: in bed, last 7 days 
V00WPRKN2 Right knee pain: stairs, last 7 days 

V00WPRKN1 Right knee pain: walking, last 7 days 
V00WOMKPR Right knee: WOMAC Pain Score (calc) 
V00KSXLKN2 Left knee symptoms last 7 days 

V00KPRKN3 Right knee pain: bending knee fully, last 7 days 

V00DIRKN3  Right knee difficulty: stand from sitting, last 7 days 
 
2) Performance: For the right leg, Table 6 shows the results of the machine learning algorithms that we 
have applied on different combinations of feature subsets, created by the FS methodology. The best 
performing algorithm for the right leg is Random Forest with an accuracy score of 84.3%, for 20 features; 
and as you can see the addition of additional extra features has produced inferior results for our prediction. 
Table 15 shows the confusion matrix of the Random Forest for the best prediction score that it has 
produced. It is observed that the other algorithms have achieved inferior results as observed from the 
Tables 3 and 5, similar results are obtained on both legs; indicating the repeatability and robustness of the 
proposed methodology. 
 
Table 6. Right leg: features and model accuracy scores (%) 
 

Features DT KNN NB Rf SVM XGB 
5 63.33 68.33 73.33 69.17 70.0 68.33 
10 75.83 75.83 75.83 76.67 75.0 75.0 
15 73.33 75.0 75.0 76.67 79.17 70.83 
20 65.0 70.83 76.67 82.5 80.0 74.17 
25 69.17 65.0 77.5 75.0 77.5 75.0 
50 72.5 66.67 73.33 78.33 79.17 75.83 
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100 65.0 64.17 70.83 78.33 78.33 78.33 
150 67.5 58.33 66.67 77.5 80.83 77.5 
200 60.0 60.83 62.5 77.5 78.33 79.17 
250 75.0 58.33 63.33 77.5 78.33 73.33 
300 68.33 58.33 64.17 78.33 80.0 78.33 
350 60.0 45.83 63.33 73.33 76.67 78.33 
400 60.83 53.33 63.33 74.17 75.83 75.0 
450 59.17 60.0 60.83 75.0 77.5 75.0 
500 55.83 58.33 59.17 74.17 77.5 73.33 
550 52.5 53.33 55.0 71.67 77.5 75.0 
600 65.0 50.83 55.0 69.17 74.17 76.67 
650 65.83 50.83 54.17 69.17 74.17 74.17 
700 60.83 51.67 52.5 75.83 77.5 74.17 
750 65.0 50.83 50.83 71.67 75.83 73.33 

 
 
Discussion of results 
In this work we have proposed a methodology in which we identified three different clusters of KOA pain 
progression along with the most informative parameters towards the development of prognostic ML 
models that can predict long-term pain progression. In order to achieve this, we have developed a voting 
system for feature importance, in which 6 different methods are used to show the most important features 
in the dataset. Then we applied 6 different models in various subsets of data, which procedure has proved 
that XGB achieves a state-of-the-art accuracy score by using only a small number of features. As you can 
see on Tables 11 and 14, we present the results of our analysis on various combinations of models and 
numbers of features. Tables 10 and 13 present the 10 most important features for KOA pain progression 
on the right and the left leg respectively. Summing up we have used for this work only data from the baseline 
and not from future visits for our prediction. Moreover, we detect the basic trends in pain progression so 
that we can construct the 3 classes of patients. More specifically we have achieved an 84.3% for the 
prediction of pain on the left leg, and an 82.5% on the right leg. An important observation here is that these 
high accuracy scores were achieved by using a relatively small subset of features (25 features for the left leg, 
and 20 for the right leg) that share similar characteristics. It was also observed from the Tables 10 and 13 
that the most important features for the pain progression prediction are related directly with the pain on 
each leg respectively. These accuracy scores, with the combination of a small number of features, can set 
the foundation, for the development of robust tools capable of identifying pain progression at an early stage 
therefore improving future KOA prevention efforts. Our ultimate goal is to improve the quality of life for 
people with KOA. For our future work, we are planning to also consider imaging data and associated image-
based biomarkers that are expected to further improve the predictive capacity of the proposed 
methodology. 
 
2nd Approach:  
Dataset description  
Data were obtained for this study from the OAI database (available at https://nda.nih.gov/oai/). OAI is a 
multi-center, ten-year observational study of men and women with ultimate objective to provide resources 
to enable a better understanding of prevention and treatment of KOA. In this work, we considered only 
clinical data from the baseline study of OAI. OAI is a big pool of risk factors, which is characterized by 
heterogeneity and high dimensionality.  In total, 649 features were considered as possible risk factors for 
the prediction of pain progression (Table 7). Specifically, we divided the available clinical data from the 
baseline visit into 7 categories: (i) subject characteristics, including variable e.g., BMI and height (ii) 
symptoms, which are related to swelling, knee difficulty, stiffness and pain (iii) behavioural, including 
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participants’ quality level of social status and daily routine (iv) medical history, which includes variables 
regarding a participant’s medications and general health histories (v) nutrition, which includes variables 
from Block Food Frequency questionnaire (vi) physical activity, which consists of questionnaire results 
regarding activities during a typical week or the last 7 days and (vii) physical exam, which are related to 
physical measurements of participants. 
 
Table 7. Characteristics of OAIs risk factors 

Feature 
category 

Description of Categories Number of features 

Subject 
characteristics 

Anthropometric parameters of participants, e.g., BMI and height 34 

Symptoms Symptoms related to stiffness, swelling, knee difficulty and pain (only 
for experiment B)  

122 

Behavioural Questionnaire results regarding participants’ social status and quality 
level of daily routine 

39 

Medical 
history 

Questionnaire results regarding a participant’s medications and general 
health histories  

138 

Nutrition Variables which derived from Block Food Frequency questionnaire.  205 
Physical 
activity 

Questionnaire data regarding activities during a typical week or the last 7 
days 

41 

Physical 
exam 

Participants’ physical measurements and performance measures 70 

Total number of features: 649 
 
Pain prediction has been formulated as a three-class classification problem. Specifically, the participants of 
the study were divided into three groups: (1) participants who experienced decline in pain intensity; (2) 
participants that had no significant change in pain intensity and (3) participants who experienced increase 
in pain intensity during the curse of the study (Figure 12). The main objective of the study is to build ML 
models that could discriminate the three aforementioned groups and therefore be able to decide whether a 
participant sample will experience any pain progression in the future.  A secondary objective is to identify 
which of the available risk factors contribute more to the classification output and as result can be 
considered as contributing factors in the prediction of pain. 
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Figure 12. Stratification of patients in the current study. 

 
Methods  
The proposed methodology comprises of the following components: (i) grouping/labeling of the available 
data employing a linear fitting technique to model the progression of pain, (ii) an evolutionary feature 
selection technique that selects robust predictive risk factors, (iii) ML for decision making and (iv) a well-
known validation scheme. 
 
Feature Selection  
A recently published FS technique, termed GenWrapper (Section 3.4) was employed to identify the most 
informative risk factors from the baseline visit that could be used to discriminate the three aforementioned 
clusters of pain progression (Figure 13). The employed FS is an evolutionary genetic algorithm-based 
wrapper technique that selects features which consistently work well at any possible data sample and thus 
has increased generalization capacity with respect to KOA progression. GenWrapper also performs well 
on imbalanced datasets and this is another reason why it was selected in the current study where the number 
of samples per class varies considerably.  The 3-class problem was formulated as a group of three binary 
classification problems and GenWrapper was applied separately at each one. This leads to the creation of 
three selected feature subsets (FS12, FS13 and FS23) on which three local ML models were trained (M12, M13 
and M23, respectively). Specifically:  
 
- FS12 comprises selected risk factors that are sensitive to the discrimination of classes 1 (pain decline) and 
2 (stable pain or no pain); 
- FS13 comprises selected risk factors that can effectively discriminate classes 1 (pain decline) and 3 (pain 
increase) and  
- FS23 comprises selected risk factors that can effectively discriminate classes 2 (stable pain or no pain) and 
3 (pain increase). 
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Figure 13. The proposed FS methodology 
 
Machine Learning 
Decision making was based on the combination of the outputs of the three trained models M12, M13 and 
M23 as shown in Error! Reference source not found.. Overall, the process of assigning a decision on a 
sample !! can be described as follows: 

- !! 	is provided as input into the three different ML pipelines.  
- Three variants of !! are created (!!

"#,	!!
"$ and !!

#$), each one comprising features as they have 
been selected from the FS applied on the three binary problems.   

- Three decisions #!
"#, #!

"$ and #!
#$ are produced from the trained models M12, M13 and M23 after 

supplying them with !!
"#,	!!

"$ and !!
#$, respectively.  

- Decision fusion is performed and the decisions with the majority counts are considered as the final 
predicted outputs. For example, if #!

"#=1, #!
"$=1 and #!

#$ = 2 then the final predicted output of 
the model is class 1 as it has been produced by the majority of the models.   

Various classification models were explored for the suitability in implementing the learning task. Given 
their effective application in previous KOA studies, Support Vector Machines (SVMs) were finally selected 
because of their capacity to handle high dimensional feature spaces and their high generalization 
performance. 

 
Figure 14. Decision making as a combination of binary classifiers trained on selected feature subsets 

 

Results and discussion  

This section presents the performance of the proposed predictive modelling methodology. The predictive 
capacity of each of the three binary classifiers is initially demonstrated with respect to the number of selected 
risk factors. Two different approaches were investigated: (i) in the first one all pain-related variables were 
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omitted from the available feature set and (ii) in the second experimentation, the pain-related variables of 
the baseline were retained.  

Predictive capacity of the binary classifiers without pain related variables 
The experimentation in this subsection focuses on a subset of the initial feature space in which all the pain-
related variables were excluded.  The list of the excluded variables is given in the appendix. Figure 15 shows 
the performance (10FCV) of the M12 classifier with respect to the number of features as they have been 
selected by the employed FS algorithm. As it is observed, the accuracy increases rapidly for the 15 first 
selected whereas the inclusion of additional features leads to a slight performance increase.  The overall 
best performance (88.82%) was achieved at 32 risk factors that we were finally selected to be included in 
the FS12 subset.  

 
Figure 15. Performance of the binary classifier M12 (declining pain versus no pain progression) with respect to the number 

of selected risk factors. Pain related variables have been excluded from the feature set. 
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Figure 16. Performance of the binary classifier M23 (no pain progression versus increasing pain) with respect to the number 
of selected risk factors. Pain related variables have been excluded from the feature set. 

 
The 10FCV performance of the M23 classifier is depicted in Figure 16. Similarly to M12, the predictive 
accuracy of M23 increases with respect to the number of features that are added in the training feature set 
and reaches the maximum of 80.36% at 42 selected features. A slight decrease on the accuracy is then 
observed with the addition of more features.  
 
A larger number of features were selected to maximize the performance of the M13 classifier as shown in 
Figure 17. Specifically, the maximum 10FCV accuracy of 84.51% was achieved at 58 selected features. The 
necessity of including more features indicates that the discrimination between classes 1(declining pain) and 
3(increasing pain) is a more difficult task compared to the tasks where class 2 (no significant pain change) 
is being discriminated from classes 1 and 3.  
 

 
Figure 17. Performance of the binary classifier M13 (declining pain versus increasing pain) with respect to the number of 

selected risk factors. Pain related variables have been excluded from the feature set. 

Predictive capacity of the binary classifiers with pain variables 
Figures 18-20 show the performance of the three binary classifiers M12, M23 and M13 which are trained on 
risk factors selected from the full feature set available at the baseline visit (with the pain variables included). 
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Figure 18. Performance of the binary classifier M12 (declining pain versus no pain progression) with respect to the number 

of selected risk factors. Pain related variables have been retained in the feature set. 

 

 
Figure 19. Performance of the binary classifier M23 (no pain progression versus increasing pain) with respect to the number 

of selected risk factors. Pain related variables have been retained in the feature set. 
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Figure 20. Performance of the binary classifier M13 (declining pain versus increasing pain) with respect to the number of 

selected risk factors. Pain related variables have been retained in the feature set. 

 
The following remarks can be extracted from Figures 18-20: (i) The maximum performance (90.46%) was 
achieved by the M12 classifier, the M13 classifier also gave a high accuracy (86.56%) whereas a 79.41% 
discrimination was accomplished by M23 classifier. (ii)  As far as the number of selected features, 23, 27 and 
57 risk factors are needed to maximize the predictive accuracy of M12, M23 and M13, respectively. (iii) Overall, 
it was concluded that the inclusion of pain related variables leads to higher accuracy on less features 
compared to the experimentation of the previous subsection where the pain related variables had been 
excluded. 
 
Feature selection results  
Table 8 cites the number of selected features for each one of the local binary models (with and without 
pain-related features). The following conclusions could be drawn from the analysis of Table 8 with respect 
to the first experimentation without pain-related risk factors): (i) Symptoms and nutrition seem to be the 
most informative feature categories. Specifically, 30 symptoms and 42 nutrition parameters were selected 
in the experiment without pain variables, demonstrating that the contribution of these 2 categories to the 
prediction output is significant; (ii) Behavioral data, medical history and physical exam variables were also 
selected by the proposed FS (13, 19 and 15 respectively) providing complementary valuable information to 
the ones mentioned above (symptoms and nutrition); (iii) Subject characteristics and physical activity had a 
smaller impact on the  prediction output (with 5 features selected per category).  
 
Table 8. Number of features selected per category in both experiments with and without pain-related features  

Feature category 
Without pain-related features With pain-related features 

C1 vs C2 C2 vs C3  C1 vs C3 C1 vs C2 C2 vs C3  C1 vs C3 

Subject characteristics - 1 4 - - 2 

Symptoms 10 11 9 14 7 18 
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Behavioural 5 4 4 2 2 3 

Medical history 4 5 10 2 9 9 

Nutrition 9 15 18 1 6 15 

Physical activity - 2 3 - 1 4 

Physical exam 4 4 7 4 2 6 

Total number of 
features 

32 42 58 23 27 57 

 
Similar findings were observed in the experimentation with the whole feature set (including the pain-related 
variables). The main difference between the two experiments (with and without pain variables) was that the 
inclusion of pain variables led to the selection of less features in total (107 compared to 132). Moreover, 
the number of selected features for the symptoms’ category was increased (39 in total). This could be 
attributed to the fact the initial state of pain at baseline is obviously a significant indicator of pain future 
progression and therefore a significant number of pain variables and other similar risk factors from the 
baseline visit were selected by the proposed FS. Overall, it was concluded that a combination of 
heterogeneous features coming from almost all feature categories is needed to predict pain progression 
highlighting the necessity of adopting a multi-parametric approach that could handle the complexity of the 
available data. 
 
3.3 Personalised Prediction of JSN progression  

 
Methodology 
A machine learning approach was developed in this work by taking advantage of the combination of 
predictive and descriptive techniques, such as clustering, FS, and classification. The proposed methodology 
for predicting JSN consists of 4 main steps: (i) Data pre-processing, (ii) data clustering, (iii) feature selection 
and (iv) data classification. In the first step, data cleaning and normalization are performed to remove noise 
and bring all the variables to the same range. Then the samples are clustered based on their JSN progression 
using well-known clustering algorithms. Then, a selection of features is realized based on the identified 
clusters (that are considered as classes in our case). The selected features are used to develop prediction 
models for the KOA progression of patients (Figure 22). 

 
Figure 22. Methodology flowchart. 

In this work two strategies were investigated: (i) In the first one, two predictive models were developed 
using data from the right and the left knee, separately and (ii) the second strategy focuses on the 
development of a unique predictive model using data from both knees of KOA patients. 
 
Data Pre-Processing, Data Clustering and Feature Selection  
The steps for Data Pre-Processing, Data Clustering and Feature Selection have described in Deliverable 
6.3. The clustering process (Deliverable 6.3) that was followed is presented in Figure 23.  
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Figure 23. Clustering process of the proposed methodology. JSM: Joint space narrowing on medial compartment. 

Data Classification 
Six well-known classification algorithms were tested for the identification of the optimum model that 
achieves the highest accuracy on the test data: 

• Gradient boosting model (GBM) is an ensemble ML algorithm, which can be used for classification 
or regression predictive tasks. Weak learners are used from GBM to produce strong learners through 
a gradual, additive, and sequential process. Hence, for the development of a new improved tree a 
modified version of the initial training data set is fitted in GBM [31]. 

• Logistic regression (LR) describes the relationship of data to a dichotomous dependent variable. LR 
is based on the logistic function. This model is designed to describe the data with a probability in the 
range of 0 and 1 [32]: 

&(!) =
"

"%&!", where	! ∈ (−∞,+∞) and 0 ≤ &(!) ≤ 1;  

• Neural networks (NNs), both shallow and deep NNs were employed. NNs are based on a supervised 
training procedure to generate a nonlinear model for prediction. They consist of layers (e.g., input layer, 
hidden layers, and output layer). Following a layered feedforward structure, the information is 
transferred unidirectionally from the input layer to output layer through the hidden layers [17,33,34]. 

• Naïve Bayes Gaussian (NBG) employs the Bayes theorem. This probabilistic classifier presents strong 
independence assumptions between the variables/features given the class. Furthermore, this model 
embraces the assumption that the data follow the Gaussian distribution [35,36]. 

• Random forest (RF) belongs in the ensemble learning methods and is based on decision trees. This 
model constructs a large number of decision trees. Every decision tree denotes a class prediction. Thus, 
the class with the most votes represents the model’s prediction [37,38]. 
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• Support vector machines (SVMs) are another supervised learning model [39,40]. SVMs target to create 
the hyperplane, which is a decision boundary between two classes that enables the prediction of labels 
from one or more feature vectors. The main aim of SVMs is to maximize the class margin that is 
actually the distance between the closest points (support vectors) of each class [41]. 

 
Evaluation 
Medical Data 
Data from the osteoarthritis initiative (OAI) database (available upon request at https://nda.nih.gov/oai/) 
were used in this study. Specifically, only clinical data from the baseline from all individuals without or 
being at high risk to develop KOA in at least one knee were included. In total, 725 features from 9 feature 
categories were considered as possible risk factors for the prediction of JSN as shown in Table 16. 
Clustering was performed on the JSN progression represented by the JSM measures (especially using the 
variables V00XRJSM, V01XRJSM, V03XRJSM, V05XRJSM, and V06XRJSM of the OAI from the first 
five visits) to group patients into two clusters (non-progressing patients and those whose JSN changes over 
time). 
 
The available data from the baseline visit were divided into 9 categories (Table 9): (i) Anthropometrics, (ii) 
behavioral, (iii) symptoms, (iv) quality of life, (v) medical history, (vi) medical imaging outcomes, (vii) 
nutrition, (viii) physical exam, and (ix) physical activity. The first category contains anthropometric 
characteristics, such as body mass index, weight, and height. The behavior category concerns the habits and 
sociability of the participant. The symptoms category also contains all features that are associated with pain 
and any dysfunction. The quality-of-life category refers to variables that represent the participation of the 
individual to social events and activities. The medical history category includes features related to the 
medical history of the participants and of their family and whether they have received a medical prescription 
in specific time periods. Another category is the medical imaging outcomes which come after clinical 
evaluation with imaging such as X-rays. In addition, in the category of physical examination, we included 
all the characteristics related to the examination of a participant (such as hand and knee exam), various 
biomechanical measurements, and field tests. Finally, the category of physical activity includes all variables 
that relate to the individual activity, such as household activities and leisure activities. 

Table 9. Maim categories of the feature subsets considered in the proposed methodology. 

Category Description Number of 
Features 

Anthropometrics 
Includes measurements of participants such as height, weight, BMI 

(body mass index), etc. 
37 

Behavioral 
Questionnaire results which describe the participants’ social 

behaviour 61 

Symptoms Includes variables of participants’ arthritis symptoms and general 
arthritis or health-related function and disability 

108 

Quality of life Variables which describe the quality level of daily routine 12 

Medical history 
Questionnaire results regarding a participant’s arthritis-related and 

general health histories and medications 
123 

Medical imaging 
outcome 

Variables which contain medical imaging outcomes (e.g., 
osteophytes and joint space narrowing (JSN)) 21 

Nutrition 
Variables resultfrom the use of the modified Block Food 

Frequency questionnaire 
224 
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Physical exam 
Variables of participants’ measurements, performance measures, 

and knee and hand exams 115 

Physical activity Questionnaire data results regarding household activities, leisure 
activities, etc. 

24 

 Total number of features: 725 
 

Evaluation Methodology 
The proposed methodology was applied in the context of predicting the JSN progression in patients with 
KOA by using the medical data derived from the dataset. Initially, the methodology was applied for each 
leg separately and, consecutively, for both legs combined. 

The proportion of 70–30% was chosen for splitting the data set to training set and testing set, respectively, 
with normalization upon the features. The models evaluation was performed on the medical dataset. Hyper 
parameter tuning was applied to most of the aforementioned models with grid search and 3-fold cross 
validation. Specifically, the involved hyper parameters are presented in Table 10 for each model. The 
prediction models were evaluated in subsets of features with increasing dimensionality. 

Table 10. Hyper parameter settings for tuning. GBM: Gradient Boosting Model; LR: Logistic Regression; NN: Neural 
Networks; NBG: Naïve Bayes Gaussian; RF: Random Forest; SVM: Support Vector Machine. 

Classification 
Model 

Hyper parameters tuning 

GBM The number of boosting stages to perform from 10 to 500 with 10 step 
size 
The maximum depth of the individual regression estimators from 1 to 10 
with 1 step size 
The minimum number of samples required to split an internal node: 2, 5 
and 10 
The minimum number of samples required to be at a leaf node: 1, 2 and 
4 
The number of features to consider when looking for the best split: 

12'&()*+&, or log#(2'&()*+&,)  
LR The inverse of regularization strength was tested on 0.001, 0.01, 0.1, 1, 2, 

3, 4, 5, 6, 7, 8, 9, 10 
Algorithm to use in the optimization problem was set to 4 different 
solvers that handle L2 or no penalty, such as ‘newton-cg’, ‘lbfgs’, ‘sag’ and 
‘saga’ 
A binary problem is fit for each label or the loss minimized is the 
multinomial loss fit across the entire probability distribution, even when 
the data is binary 
With and without reusing the solution of the previous call to fit as 
initialization 

NN Both shallow and deep structures were investigated 
Hidden layers varying from 1 to 3 with different number of nodes per 
layer (50, 100, 200) 
Activator function: Relu and 672ℎ 
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Solver for weight optimization: adam, stochastic gradient descent, 
stochastic gradient-based optimizer proposed by Kingma, Diederik, and 
Jimmy Ba and an optimizer in the family of quasi-Newton methods 
L2 penalty (regularization term) parameter: 0.0001 and 0.05 
The learning rate schedule for weight updates was set as a constant 
learning rate given by the given number and as adaptive by keeping the 
learning rate constant to the given number as long as training loss keeps 
decreasing. 

NBG - 
RF The number of trees in the forest from 10 to 500 with 10 step size 

The maximum depth of the tree from 1 to 10 with 1 step size 
The minimum number of samples required to split an internal node: 2, 5 
and 10 
The minimum number of samples required to be at a leaf node: 1, 2 and 
4  
The number of features to consider when looking for the best split: 

12'&()*+&, or log#(2'&()*+&,)  
With and without bootstrap 

SVM The regularization parameter was tested on 0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10 
Kernel type was set to linear, polynomial, sigmoid and radial basis 
functions 

Results and Discussion 

Clustering Results 

For this task we use the clustering results from Deliverable 6.3. We ought to mention that K-means achieved 
better clustering among patient groups. Regarding the identified clusters, the large one includes patients 
with stable JSN progression or patients that did not present KOA at all in their left and/or right leg, while 
the second one includes patients with alterations to JSN measures.  

Feature Selection Results 
Figure 14 illustrates the first 100 features that are selected based on the proposed FS approach separately 
for the first strategy as well as for the second strategy. From the analysis of the results (Figure 24), we have 
concluded that the feature categories with the highest contribution seem to come from the symptoms’ 
category and the category of medical imaging outcomes. Indeed, in all cases there is a feature or two from 
the symptoms’ category that were selected first. Then, three imaging outcomes were selected on all three 
cases. In total, 21, 19, and 20 features of the first 40 selected in the left knee, right knee, and both knees 
combined, respectively, come from either the symptoms or the imaging outcomes category. Other 
contributing factors proved to be the nutrition and physical exam outcomes since approximately 20 out of 
the 100 features were selected in each case. Features from the anthropometrics and medical history 
categories were selected in all cases. Overall, the main outcome of this analysis is that a combination of 
heterogeneous features from almost all feature categories is necessary for an accurate prediction of JSN. 
This highlights that there is a need for a multi-parametric approach in order to handle the complexity and 
heterogeneity of the available data. 
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Figure 24. The first 100 features selected for the left (top), the right knee (middle), and both legs (down). 

Classification Results 

Figure 25 shows the alterations in the achieved accuracy over the test set with respect to the number of 
features (with a step of 2) for the left leg.  

 
Figure 25. The accuracy of models over test set for increasing number of features for the left leg. Results are shown with a 

step size of 5 (two features added at each step). 

Figure 26 shows the alterations in the achieved accuracy over the test set with respect to the number of 
features with a step of 2 for the right leg.  
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Figure 26. The accuracy of prediction models over test set for various number of features for the right leg. Results are shown 

with a step size of 5 (two features added at each step). 

Figure 27 shows the alterations in the achieved accuracy over a test set for various number of features for 
both right and left legs combined.  

 
Figure 27. The accuracy of prediction models over test set for various number of features for the left and right legs 

combined. Results are shown with a step size of 5 (two features added at each step). 

From the aforementioned classification results on the two proposed strategies (analysis on separate legs 
and combined) the following remarks can be drawn. Training predictive models using data from one of the 
two legs leads to inferior results compared to the performance of the model that is trained on data coming 
from both legs. This can be attributed to the fact that a predictive model trained on data only from the right 
leg ignores any JSN progression that might happen to the left leg. Due to complex interactions that occur 
in the dynamics of both legs, predictive models that are trained on data from a single leg are based on partial 
knowledge of the problem and thus lead to inferior results while requiring a larger number of features. 
  
The need for applying data under-sampling on the dataset could be considered as a limitation of our study. 
Alternative data resampling algorithms (including more advanced data augmentation techniques such as 
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generative adversarial networks) have been identified as a future research direction. The use of additional 
evaluation metrics (other than accuracy) such as precision, recall, or F score would also be beneficial for 
dealing with the observed data imbalance problem. 
 

3.4 Increasing generalization using an evolutionary Machine Learning approach   

Dataset Description 

Data were obtained from the Osteoarthritis Initiative (OAI) database (available upon request at 
https://nda.nih.gov/oai/, accessed on 18 June 2020), which include clinical evaluation data, a biospecimen 
repository and radiological (magnetic resonance and X-ray) images from 4796 women and men aged 45–
79 years. The features considered in this work for the prediction of KL are shown in Table 11. The current 
study included clinical data from the baseline and the first follow-up visit at month 12 from all individuals 
being at high risk to develop KOA or without KOA. Specifically, the dataset contains 957 features from 
eight different feature categories, as shown in Table 11. In addition, our study was based on the Kellgren 
and Lawrence (KL) grade as the main indicator for assessing the OA clinical status of the participants. 
Specifically, the variables “V99ERXIOA” and “V99ELXIOA” were used to assign participants into 
subgroups (classes) of participants whose KOA status progressed or not. 

Table 11. Main categories of the feature subsets considered in this work. A brief description is given along with the number 
of features considered per category and for each of the two visits. 

Category Description Number of Features 
from Baseline 

Number of Features 
from Visit 1 

Subject 
characteristics 

Includes anthropometric parameters (Body mass index 
(BMI), height, etc.) 36 9 

Symptoms 
Questionnaire data regarding arthritis symptoms and 

general arthritis or health-related function and disability 120 80 

Behavioral Includes variables of participants’ quality level of daily 
routine and social behavior 

61 43 

Medical history Questionnaire results regarding a participant’s arthritis-
related and general health histories and medications 

123 
51 

(only medications) 

Medical imaging 
outcome 

Medical imaging outcomes (e.g., joint space narrowing 
and osteophytes) 21 - 

Nutrition 
Block Food 

Frequency questionnaire 
224 - 

Physical activity Questionnaire data regarding leisure activities, etc. 24 24 

Physical exam Participants’ measurements, including knee and hand 
exams, walking tests and other performance measures 

115 26 

Number of features (subtotal):  724 233 

Total number of features: 957 

 

Problem Definition 
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In this work, we consider KL grade prediction as a two-class classification problem. Specifically, the 
participants of the study were divided into two groups: (a) Non-progressors—healthy participants with 
KL0 or 1 at baseline with no further incidents in both of their knees until the end of the OAI data collection; 
(b) KOA progressors—participants who were healthy during the first 12 months (with no incident at 
baseline and the first visit) and then they had an incident (KL ≥ 2) recorded at their second visit (24 months) 
or later, until the end of the OAI study (Figure 28).  

 
Figure 28. Stratification of the patients in our study and formulation of the training dataset. Inclusion/exclusion criteria 
are presented along with the definition of the two data classes (knee osteoarthritis (KOA) progressors and non-progressors). 

Data Pre-Processing 

Initially, data cleaning was performed by excluding the columns with more than 20% missing values 
compared to the total number of subjects. Afterwards, data imputation was performed to handle missing 
values. As an imputation strategy, mode imputation was implemented to replace missing values of the 
numerical or categorical variables by the most frequent value of the non-missing variables [42]. 
Standardization of a dataset is a common requirement for many ML estimators [43]. In our work data were 
normalized by removing the mean and scaling to unit variance to build a common basis for the machine 
learning algorithms that followed. After application of the exclusion criteria, classes 1 (KOA progressors) 
and 2 (non-progressors) comprised 270 and 884 samples, respectively. 

Feature Selection 

Class imbalance is among the major challenges encountered in health-related predictive models, skewing 
the performance of ML algorithms and biasing predictions in favor of the majority class. To alleviate this 
problem, a novel evolutionary feature selection is proposed in this work that overcomes the class imbalance 
problem and increases the generalization capacity of the finally employed ML algorithm. 

The proposed FS is a genetic algorithm-based approach inspired by the procedures of natural evolution 
(Figure 29). It operates on a population of individuals (solutions), and at each generation, a new population 
is created by selecting individuals according to their level of fitness in the problem domain (KOA 
progression in our case). The individuals are then recombined using operators borrowed from natural 
genetics (selection, reproduction and mutation). This iterative process leads to the evolution of populations 
of individuals that are better suited to the problem domain. Here, each individual in the population 
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represents an ML model trained on a specific feature subset to discriminate the aforementioned classes 
(KOA progressors versus non-progressors). Genes are binary values and represent the inclusion or not of 
particular features in the model. The number of genes is the total number of input variables in the dataset. 
Concatenating all genes, a so-called individual or chromosome is formulated that represents a possible 
solution (feature subset) in our FS problem. 

 
Figure 29. The proposed GenWrapper feature selection (FS) methodology that includes all the involved processing steps: (i) 
generation of the initial population; (ii) fitness measurement approach; (iii) stopping criterion; (iv) evolution mechanisms and 

(v) final feature ranking after the termination of the genetic algorithm (GA). 

The Optimization Toolbox of MATLAB 2020b was used for the implementation of GenWrapper. The 
proposed FS algorithm proceeds along the following steps: 

The Optimization Toolbox of MATLAB 2020b was used for the implementation of GenWrapper. The 
proposed FS algorithm proceeds along the following steps: 

• Step1. Initialization 
A group of k chromosomes are randomly generated, forming the initial population of individuals. 

• Step2. Fitness assignment 
A fitness value is assigned to each chromosome in the population. Specifically, the process of measuring 
fitness in GenWrapper can be summarized as follows. The following 3-step process (Figure 30) is repeated 
for each of the chromosomes of the population: 
Step 2.1. From the training dataset, we keep only the features that have a value of 1 in the current 
chromosome. This creates a truncated training set. 
Step 2.2. Random undersampling on the majority class is performed on the truncated training set. This 
action leads to a balanced variant of the truncated training set. 
Step 2.3. A classifier is trained on the newly produced balanced dataset. Linear support vector machines 
(SVMs) have been chosen as the main classification criterion due to their generalization capability. 
Step 2.4. A k-fold cross-validation scheme is employed to validate the classifier performance that is finally 
assigned as a fitness value to the specific individual. 

• Step3. Termination condition 
The algorithm stops if the average relative change in the best fitness function value over Κ generations is 
less than or equal to a pre-determined threshold. 
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• Step4. Generation of a new population 
In case the termination criterion is not satisfied, a new population of individuals is generated by applying 
the following three GA operators: 
Selection operator: The best individuals are selected according to their fitness value. 
Crossover operator: This operator recombines the selected individuals to generate a new population. 
Mutation operator: Mutated versions of the new individuals are created by randomly changing genes in the 
chromosomes (e.g., by flipping a 0 to 1 and vice versa). 

• Step 6. The algorithm returns to step 2. 
• Step 7: Final feature ranking determination 
Upon termination of the GA algorithm, the features are ranked with respect to the number of times that 
they have been selected in all the individuals (chromosomes) of the final population. 
Step 7.1. A feature gets a vote when it has a value of 1 in a chromosome of the final generation. 
Step 7.2. Step 7.1 is repeated for all the chromosomes of the final generation and the features’ votes are 
summed up. 
Step 7.3. Features are ranked in descending order with respect to the total number of votes received. 

 
Figure 30. Definition of genes, chromosomes and population. 

GenWrapper evaluates the fitness of each chromosome (feature subset) by firstly applying random 
undersampling at the associated dataset (in step 2.2) and then by training an SVM classifier on it (Figure 
31). The k-fold cross-validation (CV) performance of the SVM is considered as the fitness of the specific 
individual. The best individuals (feature subsets that maximize the fitness value) are then selected and 
combined to generate the new population. This procedure forces the GA to converge to solutions (feature 
subsets) that generalize well regardless of the specific sampling that has been applied. If a specific 
resampling process had been applied universally on the dataset before the application of the GA-based FS, 
then this would lead to overfitting, since the GA algorithm would try to select the best features that fit to 
the specific data sample. The proposed technique integrates a random sampling mechanism when 
evaluating each individual, leading to features that generalize well on the whole population. Moreover, the 
choice of k-fold cross-validation as a validation scheme guarantees that the selected features have high 
predictive capacity over the whole dataset considered. Another characteristic of the proposed evolutionary 
FS is the way that features are selected/ranked in the final population. Instead of selecting features from 
the best individual in the final population, the proposed selection criterion relies on the general performance 
of features over the whole final population. The best solution (the one with the highest fitness value in the 
final population) corresponds only to the maximum possible accuracy that can be achieved by a selected 
feature subset on a specific subset of the whole sample. However, this does not necessarily mean that the 
best solution generalizes well in the whole sample. Therefore, to achieve the best possible generalization, 
the proposed FS ranks features with respect to the number of times that they have been selected in all the 
individuals of the final population. The parameters of the proposed GA-based FS have been properly 
selected and are cited in Table 12 below. 
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Figure 31. Proposed mechanism for estimating the fitness of each chromosome within a generation. 

Table 12. Hyperparameters of the optimized GenWrapper algorithm. A brief description of each hyperparameter is provided 
along with the finally selected value. 

Parameter Description Selected Value 

Population size Number of individual solutions in the population 50 

Number of generations Maximum number of generations before the algorithm halts 100 

Mutation rate Probability rate of being mutated 0.1 

Crossover Fraction 
The fraction of the population at the next generation, not including elite 

children, that the crossover function creates. 0.8 

Elite Count Positive integer specifying how many individuals in the current generation 
are guaranteed to survive into the next generation 

5 

StallGenLimit The algorithm stops if the weighted average change in the fitness function 
value over StallGenLimit generations is less than Function tolerance 

50 

Tolerance  1 × 10-3 

 

Learning 

Given that the main objective of study is the identification of robust risk factors, two well-known linear 
ML models (linear regression (LR) and linear SVM) were utilized to evaluate the predictive capability of the 
selected features. The reason for employing linear models is because (i) they are computationally efficient, 
so they can be executed multiple times within a repetitive process such as the GA-based algorithm that is 
proposed in this work, and (ii) they generalize well and, therefore, can be used to assess the generalization 
performance of the selected features. A brief description of these models is given below. 

LR is the most commonly used algorithm for solving classification problems [44]. It is an extension of the 
linear regression model for classification problems and it models the probabilities for classification 
problems with two possible outcomes. SVMs are supervised learning models for classification, regression 
and outlier detection but are more commonly used in classification problems [45]. SVMs are effective in 
high-dimensional spaces and are still effective in cases where the number of dimensions is greater than the 
number of samples. 

Validation 
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To evaluate the predictive capacity of the selected feature subset, a repeated cross validation process was 
adopted using the aforementioned classifiers. Specifically, the validation approach proceeds with the 
following steps 

• Step 1. Random undersampling is applied on the majority class, and the retained samples along 
with those from the minority class form a balanced binary dataset. 

• Step 2. A classifier is built on the balanced binary dataset and its accuracy is calculated using 10-
fold cross-validation (10FCV). 

• Step 3. Steps 1 and 2 are repeated 10 times, each one using a different randomly generated balanced 
dataset. 

• Step 4. The final performance is calculated by averaging the obtained 10FCV classification 
accuracies. The resulting final performance will be referred to here as mean 10FCV. 

By adopting this repeated validation approach, we guarantee that the selected features are not only suitable 
for a specific data sample but that they generalize well over the whole dataset. The calculated mean 10FCV 
performance aggregates the accuracies from 100 training runs (10 repetitions of 10FCV) on different 
randomly created data samples, forming a reliable measure for estimating the predictive capacity of the 
selected features. 

Results 

In this section, we demonstrate the efficiency of the proposed feature selection algorithm in comparison 
with other well-known FS techniques. The most significant risk factors, as selected by the proposed FS 
methodology, are also presented. 

Selection Criterion 

Figure 32 shows the evolution of the proposed fitness value with respect to the number of generations. As 
it was discussed in Section 2, the mean fitness value is calculated by averaging the fitness values of all the 
50 individual solutions in each generation. Each individual fitness value represents the performance of the 
employed ML model (SVM in our case) on a new, randomly generated balanced dataset (after 
downsampling the majority class) using k-fold cross-validation. Thus, the mean fitness value aggregates the 
performance of 50 employed ML models that were trained on slightly different versions of the initially 
available dataset. As it is observed in Figure 22, the mean fitness value decreases with the number of 
generations, meaning that the FS converges to a pool of selected feature subsets that have increased 
classification capacity, regardless of any specific data sampling. 
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Figure 32. Fitness with respect to number of generations for GenWrapper. The black and blue dashed lines show the best 
and the mean fitness achieved at each generation, respectively. 

The dashed black line in Figure 32 represents the minimum fitness values received at each generation of 
the algorithm. However, as it was noted, the best fitness value (0.26818 in our case) corresponds to a 
selected feature subset that has been decided based on its performance on a part of the available sample. 
The proposed scheme, instead of selecting the “best” feature subset of the final generation, proceeds by 
ranking the available features with respect to the times they have been selected in the 50 different individual 
solutions of the final generation. Figure 33 illustrates an example of such a ranking where seven features 
have been selected in all 50 individual solutions, another nine have been selected in 49 individual solutions 
and so on. The highly ranked features are the ones that are consistently selected by all individual solutions 
that are generated on different data samples. 

 
Figure 33. Feature ranking produced by the proposed FS (the dashed line indicates the number of features that were 

finally selected). 

To prove the superiority of the proposed feature selection criterion over the “best” individual solution, we 
performed the following experimentation. Two competing feature subsets were initially extracted: (a) the 
proposed one that has been selected after selecting the top 35 highly ranked features and (b) the feature 
subset extracted from the “best” individual solution of the final GA generation (comprising 42 features). 
The generalization capacity of both features subsets was assessed by employing the repetitive validation 
approach proposed in this work and the results are shown in Table 13. The proposed feature ranking led 
to higher accuracy (in terms of mean performance, minimum and maximum accuracies), employing less 
features (35) compared to the ones selected in the “best” individual solution (42). 

Table 13. Comparative analysis with respect to the final selection of features: proposed feature ranking versus the feature 
subset of the best individual solution in the final generation. 

FS Criterion 

10FCV Accuracy Performed 10 Times 

Average Min Max Std No. of 
Features 
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Feature subset extracted from the 
“best” individual solution of the final 

generation 
70.10% 67.59% 72.04% 1.13% 42 

Proposed feature ranking  71.25% 69.22% 73.33% 1.57% 35 

 

Features Selected 

Table 14 cites the 35 features selected by the chosen GenWrapper FS approach. A short description of the 
features and the categories in which they belong are presented. Seven out of the 35 selected risk factors 
come from the symptoms category, representing parameters related to pain, swelling, stiffness and knee 
difficulty, demonstrating the relevance of symptoms in the occurrence and progression of KOA. Moreover, 
eight features represent diet and nutrition-related parameters that also constitute an important risk factor 
category. Nine of the features are related to physical activity or exams, whereas another five behavioral risk 
factors were selected as relevant to KOA progression. Medical history or status estimated through 
subjective (three self-reported risk factors) or more objective metrics (medical imaging outcomes such as 
the existence of osteophytes) were also selected by the proposed FS approach. Finally, two parameters 
describing subject characteristics were among the selected risk factors (specifically the patient’s body mass 
index (BMI) and height). 

Table 14. Characteristics of the 35 most informative risk factors as selected by the proposed GenWrapper. 

Selected Features Feature Category Description 

P01BMI, P01HEIGHT Subject characteristics 
Anthropometric parameters including 

height and BMI 

KSXRKN1, V00WOMSTFR, KPLKN1, 
V00WPLKN2, DIRKN16, V00KOOSYML, 

V00INCOME 
Symptoms 

Symptoms related to pain, swelling, 
stiffness and knee difficulty 

V00EDCV, V00KQOL4, V00KQOL2, 
V00CESD9, CEMPLOY Behavioral 

Participants’ quality level of daily routine 
and social behavior and social status 

V00RXCHOND, V00RA, V00CHNFQCV Medical history 
Questionnaire data regarding a participant’s 

general health histories and medications 

P01SVLKOST Medical imaging outcome Medical imaging outcomes (e.g., 
osteophytes) 

V00SUPCA, V00FFQ59, V00FFQSZ13, 
V00FFQ33, V00SUPB2, V00FFQ12, 

V00SUPFOL, V00FFQ19 
Nutrition 

Block Food Frequency questionnaire for 
daily average, how much each time or for 

past 12 months 

PASE2, PASE6, V00PA130CV Physical activity Questionnaire results regarding activities 
during typical week or past 7 days 
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RKALNMT, V00lfmaxf, V00rfTHPL, 
V00lfTHPL, STEPST1, V00rkdefcv 

Physical exam 
Physical measurements of participants, 
including tests and other performance 

measures 

 

Comparative Analysis 

The performance of the proposed FS methodology was compared with eight well-known FS techniques in 
the recent literature. The selected techniques along with their main characteristics are briefly presented 
below. 

A classical wrapper FS was employed in which the feature selection process is based on a specific machine 
learning algorithm that we are trying to fit on a given dataset. It follows a time-consuming search approach 
by evaluating all the possible combinations of features against the evaluation criterion. The evaluation 
criterion is simply a performance measure which depends on the type of problem. Infinite latent feature 
selection (ILFS) is a probabilistic latent feature selection approach that performs the ranking step by 
considering all the possible subsets of features, bypassing the combinatorial problem [47]. Unsupervised 
graph-based filter (Inf-FS) is another FS algorithm proposed, again, by Roffo et al. (2015) [48]. In Inf-FS, 
each feature is a node in a graph, a path is a selection of features and the higher the centrality score, the 
most important the feature. It assigns a score of importance to each feature by taking into account all the 
possible feature subsets as paths on a graph. Correlation-based feature selection (CFS) sorts features 
according to pairwise correlations [49], whereas LASSO, proposed by Hagos et al. (2017), applies a 
regularization process that penalizes the coefficients of the regression variables while setting the less 
relevant ones to zero with respect to the constraint on the sum [50]. In LASSO, FS is a consequence of this 
process, when all the variables that still have non-zero coefficients are selected to be part of the model. 
Minimum redundancy maximum relevance (Mrmr) [51] is another well-known FS algorithm that 
systematically performs variable selection, achieving a reasonable trade-off between relevance and 
redundancy. A hybrid FS methodology was also employed that combines the outcomes of six FS 
techniques: two filter algorithms (Chi-square and Pearson correlation), three embedded ones (LightGBM, 
logistic regression and random forest) and one wrapper (with logistic regression) [52]. In this approach, all 
six FS techniques are applied separately, with each one resulting in a selected FS, and the final feature 
ranking is decided on the basis of a majority vote scheme. PCA is a well-known feature reduction method 
that reduces the dimensionality of data by geometrically projecting them onto lower dimensions called 
principal components (PCs), with the goal of finding the best summary of the data using a limited number 
of PCs. The MATLAB-based feature selection library FSLib 2018 
(https://www.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library, accessed on 
30 January 2021) was used for the implementation of the competing FS algorithms on a research 
workstation with Intel Core i7-7500 processor, 2.70 GHz CPU (16 GB RAM). 

Figure 34 depicts the results of the comparison between the proposed GenWrapper FS and a classical 
wrapper FS technique. Specifically, the obtained mean 10FCV accuracies are shown with respect to the 
number of features as they have been ranked by the two compared approaches using two classifiers (LR 
and SVM). The following remarks can be extracted from Figure 24: 

• GenWrapper significantly outperforms the classical wrapper FS, especially for a small number of 
selected features (up to 20). This superiority is proven for both SVM and LR; 

• GenWrapper employing SVM gives the best overall performance (71.25% at 35 selected features). 
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Figure 34. Accuracy (mean 10-fold cross-validation (10FCV)) with respect to selected features (curves): GenWrapper 

versus a classical wrapper using two classifiers (support vector machine (SVM) and logistic regression (LR)). 

Figure 35 shows the progression of the mean 10FCV accuracy with respect to the number of selected 
features for the proposed FS and the other seven competing FS techniques (CFS, ILFS, Inf-FS, Lasso, 
Mrmr, PCA and hybrid). In this comparative analysis, a linear SVM classifier were employed by all 
techniques since it proved to be the most efficient ML model. GenWrapper is the best-performing 
technique, achieving high accuracies (3.4% higher than the second best). Hybrid FS and Mrmr were the 
second and third best performers, achieving accuracies of 67.85% and 67.29%, respectively. Mrmr was very 
successful at the first 10 selected features but then it reached a threshold within the range of 67–68%, 
whereas the inclusion of further features had a minor or even negative effect on the classification 
performance. The rest of the FS techniques had moderate performances (61.97–65.11%).  

 
Figure 35. Accuracy (mean 10FCV) with respect to selected features: GenWrapper versus the remaining competing FS 

techniques. SVM was used for the classification task for all eight FS techniques. 

Discussion of results 

Predicting KOA onset and its further progression is among the best strategies to reduce the burden of the 
disease. Risk factors for incident OA may differ from those for OA progression given that the incidence 
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and progression of radiographic knee OA may involve different processes [53,54]. Several risk factors have 
been reported to be associated with the incidence of knee OA [55,56]. However, our understanding about 
predictive risk factors associated with KOA progression is limited due to the fact that the number of studies, 
in which risk factors and incidence of knee OA have been investigated longitudinally, is relatively small. 
This study contributes to the identification of robust risk factors for knee OA progression as a first, but 
very important, step toward achieving the goal of developing preventive strategies and intervention 
programs and finally reducing the incidence and associated morbidity of knee OA. 

Identifying important features from an imbalanced data set is an inherently challenging task, especially in 
the current KOA prediction problem with limited samples and a massive number of features. Feature 
selection algorithms employing data resampling have been typically utilized to reduce the feature 
dimensionality and at the same time to overcome the class imbalance challenge. Oversampling algorithms 
randomly replicate examples from the minority class which in some scenarios can facilitate the FS process 
but is also prone to overfitting [57]. In data under-sampling, examples from the majority class are randomly 
discarded in order to rectify the disparities between classes. However, informative samples might be 
discarded from the final training set, reducing the generalization capabilities of the finally selected risk 
factors. New approaches are needed to address the intersection of the high dimensionality and imbalanced 
class problems due to their complicated interactions. 

To cope with all the aforementioned challenges, the proposed FS technique incorporates a number of 
features aiming towards the identification of robust risk factors (with increased generalization capacity) 
extracted from a highly imbalanced dataset. GenWrapper relies on a stochastic method for function 
optimization based on the mechanics of natural genetics and biological evolution. This stochastic search is 
employed to identify a globally optimal feature subset, compared to a costly search that makes local 
decisions. The proposed FS performs better than traditional feature selection techniques, can manage 
datasets with many features and does not need any specific knowledge about the problem under study. 
Compared to traditional GA-based FS algorithms, GenWrapper applies random undersampling at each 
individual solution, forcing the GA to converge to solutions (feature subsets) that generalize well regardless 
of the applied data sampling. K-fold cross-validation is utilized to measure the fitness of each individual 
solution, guaranteeing that the selected features have high predictive capacity over the whole dataset 
considered. Finally, instead of selecting the “best” individual of the final population, the proposed FS ranks 
features with respect to the number of times that they have been selected in all the individual solutions of 
the final population. This leads to selected features that consistently work well at any possible data sample 
and, thus, have increased generalization capacity with respect to KOA progression. 

Linear classifiers were employed on this study, and this choice can be attributed to the fact that evidence 
of linear separability between the two classes (progressors versus non-progressors) was identified in 
previous studies of the authors on the same problem. Specifically, as it was reported in [52], LR and linear 
SVMs outperformed all the competing non-linear models (including Random Forest, XGboost, KNN and 
decision trees) on the same problem of predicting KOA. This finding highlight that the power of the 
proposed technique lies on the selection of robust and informative risk factors, whereas the complexity of 
the finally employed classification models plays a less crucial role. 

The performance of the proposed FS methodology was compared with eight well-known FS techniques in 
the recent literature. GenWrapper employing SVM led to the overall best performance (71.25% at 35 
selected features), significantly outperforming all the competing algorithms. Specifically, it proved to be 
more accurate than the classical wrapper FS (which was the second-best approach), and this superiority was 
more evident for a small number of selected features (up to 20). GenWrapper was also much more effective 
(at least 3.4% more accurate) than the other seven competing FS techniques (CFS, ILFS, Inf-FS, LASSO, 
Mrmr, PCA and hybrid). Finally, apart from being the most accurate approach, GenWrapper was prove to 
also be the most consistent FS technique, with the great majority of the obtained 10FCV accuracies being 
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higher than 70%, whereas all the other competing FS algorithms led to inferior and less consistent 
accuracies. 

4. Personalised Diagnosis models  

Knee OA has a higher prevalence rate compared with other types of OA. In recent years, it has been 
realized that KOA results from a multifactorial, complex interplay of constitutional and mechanical factors, 
including joint integrity, mechanical forces, local inflammation, genetic predisposition and biochemical 
processes. Furthermore, KOA is closely associated with obesity and age [1]. The specific disease causes 
significant problems when it occurs. The main consequences are: 1) low quality of life, due to severe pain 
and stiffness, 2) social exhaustion due to low public participation and 3) low levels of psychology and 
resignation from life [3]. Due to the multifactorial nature of ΚΟΑ, disease pathophysiology is still poorly 
understood and diagnosis tools are under current investigation. 

Diagnosis, prognosis, or treatment of KOA is a challenge for the scientific community. Increasing data 
collection has led to an increasing number of studies employing big data and AI analytics applied in the 
KOA research. As a result of this, several techniques have been reported in the literature in which Machine 
learning (ML) models were used to diagnose KOA [4]. In 2016, Yoo et al. [58] developed a new easy-to-
calculate self-assessment scoring system making use of a large population dataset. The main finding was the 
identification of patients at high risk of knee OA who need treatment before aggravation. An ANN model 
was constructed with AUC of 0.66-0.88. In another study, Long et al. [59] used outcome scores (KOOS) 
and biomechanical gait parameters for the identification of parameters which are associated with functional 
and quality of life outcomes for injury and knee OA in comparison with health subjects. Furthermore, Lim 
et al. [60] developed a deep learning (DL) model for the detection of KOA by using demographic, personal 
characteristics, lifestyle and health status related variables. In additional, Moustakidis et al. by using self-
reported clinical data (such as symptoms, disability, function and general health) in subsets developed 
different ML models as well as DL architectures for the KOA diagnosis [17]. Moreover, in 2019 
Christodoulou et al. used self-reported clinical data for the investigation of the DL capabilities in diagnosis 
of KOA. The potential of this approach was demonstrated by classifying different subgroups of control 
participants from self-reported clinical data [61]. According to the literature, there is a lack of knowledge 
on the self-reported clinical data contribution of the diagnosis and training of classifiers. 

Identification of risk factors for developing Knee OA has been limited by an absence of non-invasive 
methods to inform clinical decision making and enable early detection of people who are most likely to 
progress to severe KOA. The first approach of this section contributes to the diagnosis of KOA through 
the identification of risk factors based on a robust feature selection technique and well-known ML models 
of machine learning. Furthermore, the second approach in this section makes a contribution towards KOA 
diagnosis through the application of various machine intelligence models on self-reported clinical data (such 
as symptoms, disability, function and general health) from the osteoarthritis initiative study. Different 
machine learning models as well as deep learning architectures were tested with respect to their ability to 
recognise participants with symptomatic KOA or being at high risk of developing KOA in at least one 
knee. The effect of various feature subsets was also investigated. These feature categories are related to (i) 
the temporal occurrence of symptoms, (ii) symptoms’ type and (ii) participants’ quality of life status. 
WOMAC and KOOS features were also evaluated for their capacity to diagnose KOA. Finally, the best 
performing approach (deep learning) was demonstrated in subgroups defined by gender and age. A 
quantum perspective of the application of deep learning techniques for the task of OA diagnosis is also 
given in the discussions.      

4.1 Diagnosis of KOA based on KL grade 

Data description  
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Data was obtained from the osteoarthritis initiative (OAI) database (available upon request at 
https://nda.nih.gov/oai/). Specifically, the current study only includes clinical data from baseline from all 
individuals with or without KOA (Table 15). Furthermore, our study was based on Kellgren and Lawrence 
(KL) grade as outcome for the classification. 

Table 15.  Main categories of the feature subsets considered in this work. 

Category Description 

Accelerometry 
Variables that describe whether a person is physically 
active 

Biomarkers Variables which describe the collection of 
biospecimens 

Joint 
symptoms/function 

Questionnaire results regarding arthritis symptoms and 
general arthritis or health-related function and 
disability 

Medical history 
Questionnaire data regarding a participant’s arthritis-
related and general health histories 

Nutrition 
Variables which collected using the modified Block 
Food 

Frequency questionnaire 

Physical exam, 
measurements 

Variables which contain physical measurements of 
participants, including height, weight, BMI, abdominal 
circumference, blood pressure, isometric strength, 
knee and hand exams, walking tests, and other 
performance measures 

Subject characteristics,  
risk factors 

Variables which contains demographic information 
and other descriptive information about enrolled OAI 
participants 

 

Subsequently, the 4796 samples of the dataset were divided into two equal categories, Classes became equal 
by reducing the number of the majority class to the number of the minority, at random as follows: 

• Class 1: KOA: This class comprises of 1936 participants who have KL >=2 at baseline. These 
participants had KL grades equal or higher than 2 in at least one of the two knees or in both.  

• Class 2: Non-KOA: This class involves 1936 participants with KL0-1 at baseline.  In particular, these 
participants do not have ΚΟA in any of their knees. 

 

Methodology 

The proposed in this work ML methodology for KOA diagnosis includes five processing steps: data pre-
processing of the collected clinical data (707 features in total), feature selection, learning process and 
evaluation of the classification results. More details about the proposed methodology are presented in the 
following sections.  
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Pre-processing and Feature Selection (FS) 

The steps for pre-processing and Feature selection have described in Deliverable 6.3. 

Learning Process 
 
Various ML models were evaluated for their suitability in the task of KOA classification. A brief description 
of these models is provided below. 

• XGboost is a popular and efficient implementation of the Gradient Boosted Trees algorithm. It is 
a supervised learning method that is based on function approximation by optimizing specific loss 
functions as well as applying several regularization techniques. Specifically, this model is a sum of 
CART (tree) learners which try to minimize the log loss objective and the scores at leaves. These 
scores are actually the weights that have a meaning as a sum across all the trees of the model. 
Furthermore, they are always adjusted in order to minimize the loss [23]. 

• Random Forest classifier is ensemble algorithm. Ensembled algorithms are those which combines 
more than one algorithm of same or different kind for classifying objects. Random forest classifier 
creates a set of decision trees from randomly selected subsets of training set. It then aggregates the 
votes from different decision trees to decide the final class of the test object [22]. 

• Decision Trees (DTs) are a non-parametric supervised learning method used for classification and 
regression. DTs are simple to understand and to interpret. They require little data preparation and 
perform well even if their assumptions are somewhat violated by the true model from which the 
data were generated [19]. 

• Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem 
with the “naive” assumption of conditional independence between every pair of features given the 
value of the class variable. Naive Bayes learners and classifiers can be extremely fast. The 
decoupling of the class conditional feature distributions means that each distribution can be 
independently estimated as a one-dimensional distribution [24]. 

• Support vector machines (SVMs) are a set of supervised learning methods used for classification, 
regression and outlier’s detection. They are effective in high dimensional spaces and still effective 
in cases where the number of dimensions is greater than the number of samples. Furthermore, 
SVMs use a subset of training points in the decision function, called support vectors [45]. 

• K-Nearest Neighbor (KNN) is a simple algorithm that stores all the available cases and classifies 
the new data or case based on a similarity measure. In the classification setting, the K-nearest 
neighbor algorithm essentially boils down to forming a majority vote between the K most similar 
instances to a given “unseen” observation. Similarity is defined according to a distance metric 
between two data points. A popular one is the Euclidean distance method [62]. 

• Logistic regression models the probabilities for classification problems with two possible 
outcomes. It’s an extension of the linear regression model for classification problems. The 
interpretation of the weights in logistic regression differs from the interpretation of the weights in 
linear regression, since the outcome in logistic regression is a probability between 0 and 1 [44]. 
 

Hyperparameter selection was implemented to optimize the performance of our models and to avoid the 
overfitting and the bias error. Each model was optimized with respect to a number of parameters.  
Specifically (i) gamma, maximal depth, minimum child and weight were optimized for XGboost, (ii) 
criterion, minimum samples leaf, minimum samples split and number of estimators for Random Forest, 
(iii) maximal features, minimum samples and minimum number of decision splits for Decision Trees, (iv) 
C and kernel for SVMs, (v) leaf size and k-parameter for KNN and (vi) penalty and C for Logistic 
Regression. 

Validation 
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A 70%-30% random data split was applied to generate the training and testing subsets, respectively. 
Learning of the ML was performed on the stratified version of the training sets and the final performance 
was estimated on the testing sets. 

Results 

In this section, we present the most important risk factors as they have been selected by the proposed 
hybrid FS methodology. Moreover, the overall performance of the models is presented in relation to the 
number of features and then reference is made to the models with the highest accuracies. Finally, an 
explainability analysis is performed on the model that was chosen as the best. 

Table 16. First ten selected features in order of importance, their description and the number of appearances in their selection 
criteria. 

Feature Description Criterion 

V00LKPFCRE Left knee exam: patello-femoral crepitus present on 
exam 

6/6 

V00KSXRKN1 Right knee symptoms: swelling, last 7 days 6/6 

V00KSXLKN5 Left knee symptoms: bend knee fully, last 7 days 6/6 

V00KSXLKN1 Left knee symptoms: swelling, last 7 days 5/6 

P02ELGRISK 
Knee symptoms, risk factors, or both, status at 
IEI/SV 

6/6 

P01KSURG Right knee, ever have surgery or arthroscopy 6/6 

V00WTMAXKG Maximum adult weight, self-reported (kg) 5/6 

V00RKPFCRE 
Right knee exam: patello-femoral crepitus present on 
exam 

5/6 

V00KQOL1 Quality of life: how often aware of 
problems with knee(s) 

5/6 

V00ABCIRC Abdominal circumference (cm) 5/6 

 

Table 16 gives a short description of the first ten (10) selected features along the associated votes that were 
assigned to each one. Most of the selected features are related to symptoms, weight, medical history (e.g., 
surgery) and data from the physical examination of the subjects. 

Figure 36 depicts the testing performance (%) of the competing ML models with respect to the number of 
selected features. In particular, DTs failed in this task, recording low testing performances. In contrast, the 
other models had an upward trend in the first 20-40 features, followed by a steady testing performance. 
Specifically, the Logistic Regression model with respect to selected features showed an upward trend in 30-
40 features, with a maximum at 40 features. Then with the addition of new features, it showed a relatively 
stable testing performance. Best overall performance was achieved by Logistic Regression at 40 features 
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whereas the inclusion of additional features led to a small reduction in the accuracies achieved. 

 

Figure 36. Learning curves with testing accuracy scores for different ML models trained on feature subsets of increasing 
dimensionality. 

Discussion of results 

The main finding of this work is that explainability of ML models can play an important role on identifying 
the impact of different risk factors in the diagnosis of KOA. Based on the results of a thorough comparative 
investigation of various ML models on the KOA diagnosis, it was observed that the correct choice of 
features plays a key role in the specific problem, while the capacity of the classifiers comes in second place. 
In light of this, the proposed ML workflow for diagnosis of knee osteoarthritis was focused not only on 
the detection accuracies achieved but also on the post-hoc explainability of the generated ML models 
(Deliverable 9.3).  

4.2 Machine Learning and Deep Learning Diagnosis of KOA with focus on patients subgroups  

Data Description 

Data was obtained from the osteoarthritis initiative (OAI) database which is a multi-centre prospective 
longitudinal cohort study designed to identify risk factors associated with the incidence and progression of 
KOA [63]. Launched in 2002, OAI began enrolling people, aged 45–79 years, with symptomatic KOA or 
being at high risk of developing KOA in at least one knee in four US medical centres. In total 4796 
participants were recruited and followed over an 8-year period with a follow-up rate of more than 90% over 
the first 48 months.  

The current study only includes self-reported data about joint symptoms, disability, function and general 
health from all individuals with or without KOA from the baseline visit. The selected dataset, that comprises 
of 141 risk factors from 4796 participants, was further separated into 10 overlapping feature subsets with 
different characteristics. Three subsets are relevant with the temporal occurrence of symptoms, four subsets 
refer to different types of self-reported symptoms and one involves features related to health, emotional 
problems, lifestyle and psychology. Hybrid metrics related to WOMAC and KOOS have been also 
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considered as separate sets. The effect of each feature subset on the KOA diagnosis was investigated in the 
following sections of the work, providing insights about their clinical significance. Table 17 cites the main 
characteristics of the 10 feature subsets considered in our work.  

 

 Table 17. Main characteristics of the feature subsets considered in this work. 

Category Num. of 
features 

Feature 
category 

Description 

Temporal 
occurrence of 
symptoms  

68 past week Any type of symptoms over the past 7 days  

10 past month Any type of symptoms over the past 30 days 

13 past year Any type of symptoms over the past 12 months  

Type of 
symptoms  

64 Pain Features related to pain in various activities for both 
knees, hips and joints in all time intervals 

27 Stiffness  Features related to stiffness in all the time intervals 

37 Knee 
difficulty 

Knee difficulty on either right or left leg on various 
activities in all time intervals 

12 Other 
symptoms  

Symptoms such as swelling, grinding sensation, knee 
catch or hang up in all time intervals 

Quality of life 15 Quality of 
life 

Features related to health, emotional problems, lifestyle, 
psychology  

Hybrid 
metrics  

8 WOMAC Indexes which consist a score of questions about pain, 
symptoms and quality of life for both of knees 

5 KOOS Indexes which consist a score of questions about pain, 
stiffness and disability for both of knees 

 

Furthermore, the 4796 samples of the dataset were divided into three categories as follows:   

- Class 1: Incidence: This class comprises of 3284 participants who do not have symptomatic 
tibiofermoral knee OA at the screening clinic visit in at least one knee, but who do meet the risk 
factor eligibility criteria for their age group. 

- Class 2: Progression: This class involves 1390 participants with frequent knee symptoms, which 
are defined as “pain, aching or stiffness in or around the knee on most days”.  These participants 
had knee symptoms on most days of 1 month of the preceding year and radiographic tibiofemoral 
knee OA (Osteoarthritis Research Society International (OARSI) atlas grades 1–3) on a fixed-
flexion radiograph at recruitment in at least one knee. 
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- Class 3: Non-exposed control group: 122 participants have been assigned in this class without any 
knee symptoms in either knee, who do not have any of the eligibility risk factors and who have 
OARSI grade 0 in both tibiofermoral compartments for osteophytes. 

 

The following 2 classification problems were investigated in this work: (a) a 2-class problem with the objective 
to discriminate participants belonging to class 1 (progression) and class 2 (incidence), (b) a 3-class problem that is 
a multi-class classification problem where all three classes were considered in the training and testing 
datasets. It should be noted that class 3 is much smaller than the other two thus setting a highly imbalanced 
data challenge.   

 

Methodology 

The proposed in this work machine intelligence methodology for OA classification includes three 
processing steps: data pre-processing to handle missing values and normalise the collected clinical data, a 
learning process for training, and evaluation of the classification results, as illustrated in Figure 37. The 
proposed methodology is thoroughly presented in the following sections. 

 

 
Figure 37. Flowchart of the proposed machine intelligence methodology. 

Pre-processing  

Mean imputation was performed to handle missing values. Specifically, for numerical features missing 
values were replaced by the mean feature value. In case of categorical features, the most frequent category 
was used to replace NaNs. Since activation functions of DNNs do not generally map into the full spectrum 
of real numbers, we first standardized our data to be drawn from N(0; 1). Normalization also allowed us to 
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compute more precise errors in this standardized space, rather than in the raw feature space. Data 
resampling was employed to cope with the class imbalance problem.  

 

Learning process 

Various machine intelligence models were evaluated for the suitability in the task of OA classification. Both 
machine learning and deep learning techniques were investigated, as described below.  

Machine learning models: We tested linear discriminant analysis (LDA) [64] to provide a baseline for 
comparisons with more advanced models. We also evaluated decision trees [65,66] driven by Gini’s diversity 
index, KNN and weighted KNN [67], as well as non-linear support vector machines (SVM) algorithms 
with Gaussian kernel [68], which can deal with the overfitting problems that appear in high-dimensional 
spaces. The ensemble techniques AdaBoost [69] and Random Forest [70] were also evaluated using DT 
models as weak learners. Three fuzzy based algorithms were also tested including Fuzzy K-Nearest 
Neighbors (FKNN) and Fuzzy Nearest Prototype classifier (Fuzzy NPC) by Keller and Gray [71] as well 
as Condensed Fuzzy K-Nearest Neighbors (CFKNN) by Zhai [72].  

Deep learning models: Deep learning [73] holds great promise to fulfil the challenging needs of various 
industries including data-driven healthcare. It performs human-like reasoning and extracts compact features 
which embody the semantics of input data. Deep neural networks are stacked layer models in which a series 
of layers is connected together including an input layer, an output layer and a few hidden layers placed 
between them. The number of nodes in the input and output layers correspond to the dimensionality of 
the input and the target data, respectively. The nonlinear relationship between the DNN layers is indicated 
by the following equations: 

 

 
 

 
 

where !-
.  is the activation value of neuron j in layer l; 9-

. is a linear activation combination of neurons in 

the previous layer; :-
. is the bias value of neuron j in layer l; ;!,-

.  is the weight parameter between node i in 
layer l−1 and node  j in layer l; and f(.) is the activation function.  

Our DNN models use fully connected, dense neural layers where the output of one layer serves as the input 
for the next layer. A number of different DNN structures were investigated in this work with varying: (i) 
input dimensionality (as described in Table I), (ii) number of hidden layers and (iii) number of nodes per 
hidden layer.  Rectified linear activation was selected given that it has demonstrated high performance on 
a variety of recognition tasks, and is a more biologically accurate model of neuron activations [74]. The final 
neural layer reduces the dimensionality to either 2 or 3 nodes using Softmax as activation function. Adaptive 
learning rate was employed with ADADELTA [75] that automatically combines the benefits of learning 
rate annealing and momentum training to avoid slow convergence. Weight initialisation was performed 
using uniform distribution. Early stopping was implemented based on the convergence of the logloss metric.   

Validation  

Ten-fold cross validation (10FCV) was used to evaluate the effectiveness of the learned classification 
models. The dataset was split into 10 subsets, called folds. The train-test method was applied iteratively by 
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using each of the 10 folds for testing, while the learning model was trained with the remaining nine. The 
performance was calculated by averaging the individual ten test scores. To achieve a fair comparison 
between the different approaches, hyperparameter selection was performed for each one of the investigated 
machine and deep learning algorithms. A validation subset was held out from the training sets (a randomly 
selected 10%) as a criterion for selecting the optimum hyperparameters by means of a grid search process.  

Results and Comparisons 

Comparative analysis  

This subsection cites the results of a comparative analysis over a number of well-established machine 
learning and deep learning models on the problems of 2-class and 3-class classification using the entire 
feature sets. Cross validated results are shown in Table 18, whereas the optimal hyperparameters are 
highlighted per model. Each model was optimized on the validation subsets with respect to the following 
parameters: (i) minimum leaf size and maximal number of decision splits for Decision Trees, (ii) C and 
sigma for SVMs, (iii) k-parameter for KNN, Fuzzy KNN, Fuzzy NPC and CFKNN, (iv) number of weak 
learners and weak learner type for Adaboost and Random Forest and (v) number of hidden layers and 
number of nodes per layer for Deep Neural Networks.  

 
The best overall performance on the 2-class problem (80.74%) was achieved by the DNN model with 3 
hidden layers and 50 nodes per layer. DNN also outperformed all the rest ML models in the 3-class problem 
demonstrating at the same time the highest level of accuracy stability over the 10 testing folds (79.5% overall 
accuracy with a standard deviation of 1.2). However, this accuracy comes with an increase of computational 
complexity since DNN was the slowest in its execution with 31.5s and 36.4s training time for the 2-class 
and 3-class problems, respectively. KNN was the fastest algorithm with 0.016s and 0.03s execution time 
for the 2- and 3-class problems achieving moderate performances. Statistical significance analysis was also 
performed by applying t-tests at the confidence level of 5% on the accuracies obtained on the 10 CV data 
folds. The results of DNN were significantly different from the majority of the rest models for both 2-class 
and 3-class problems. No significant differences were obtained on the results of DNN, SVM, Adaboost 
and Random Forest in the 2-class problem and the results of DNN and SVM for the 3-class problem.  

 

Table 18. Comparative analysis between the best DNN models and state-of-the-art ML models 

Model type 

10 fold cross validation accuracy (%) 

2 classes 3 classes 

Overall 
(std) 

Time 
(s) 

Overall 
(std) 

time 

Decision trees (minimum leaf size: 5, Split 
criterion: Gini’s index, Maximal number of 
decision splits: 7) 

79.3* (2.1) 0.22 77.7* (2.0) 0.26 

Linear Discriminant 80.1* (2.3) 0.07 76.2* (2.8) 0.08 

SVM Gaussian (C=1, sigma =0.15) 80.2 (1.05) 2.8 79.1 (1.34) 3.2 
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KNN  (k=9) 79.1* (1.8) 0.016 76.9* (2.2) 0.03 

Fuzzy KNN  (k=11) 79.2* (1.33) 0.034 77.39* (1.45) 0.06 

Fuzzy NPC (k=5) 77.8* (1.24) 0.09 72.4* (1.9) 0.11 

CFKNN (K=9) 78.6* (1.06) 0.1 73.6* (2.05) 0.14 

Adaboost (number of weak learners: 130, 
Maximal number of decision splits: 1024, weak 
learner: DT) 

80.6 (1.33) 25.6 78.6* (1.2) 28.7 

Random Forest (number of weak learners: 130, 
Maximal number of decision splits: 4, weak 
learner: DT) 

80.1 (1.1) 5.1 77.7* (1.86) 5.5 

Deep Learning (Adam optimization, ReLU 
functions, adaptive learning rate, 3 hidden layers, 
50 nodes per layer) 

80.7 (1.1) 31.5 79.5 (1.2) 36.4 

*Significantly different from DNN (p < 0.05) by applying t-tests on the 10FCV accuracies over the 10 data 
folds 

The classification performance of the best performing models (in which no significant statistical differences 
were identified) was further evaluated with respect to various validation metrics including confusion matrix, 
class precision, sensitivity and specificity.  

 

Table 19. Confusion matrix for the best DNN architecture on the 2-class problem using the entire feature 
set 

Model   Incidence Progression Precision Sensitivity Specificity 
Overall 
accuracy 

DNN 
Incidence 2593 691 78.96% 

92.54% 63.08% 80.74% 
Progression 209 1181 84.96% 

SVM 
Incidence 2633 651 80.17% 

90.54% 63.13% 80.19% 
Progression 275 1115 80.21% 

RF 
Incidence 2720 564 82.82% 

88.25% 64.57% 80.1% 
Progression 362 1028 73.95% 
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ADA 
Incidence 2617 667 79.68% 

91.59% 63.29% 80.59% 
Progression 240 1150 82.73% 

 

Table 20: Confusion matrix for the best DNN architecture on the 3-class problem using the entire feature 
set 

Model   Incidence Progression 
Non-
exposed 

Per class 
accuracy 

Overall 
accuracy 

DNN 

Incidence 2813 431 40 85.65% 

79.50% 
Progression 442 948 0 68.20% 

Non-
exposed 70 0 52 

42.62% 

SVM 

Incidence 2767 472 45 84.25% 

79.08% Progression 375 1014 1 72.94% 

Non-
exposed 

110 0 12 9.83% 

RF 

Incidence 2740 544 0 83.43 

77.68% 
Progression 452 936 2 67.33 

Non-
exposed 

70 2 50 
40.98 

ADA 

Incidence 2807 436 41 85.47% 

78.58% 
Progression 467 921 2 66.25% 

Non-
exposed 79 2 41 

33.60% 

 

Table 19 demonstrates the results of DNN, SVM, RF and Adaboost on the 2-class problem. Apart from 
being the best model in terms of overall accuracy, DNN achieved the highest sensitivity (92.54%) as well 
as the highest precision for the class ‘progression’ (84.96%) maintaining a 78.96% precision for class 
‘incidence’. The highest specificity was achieved by RF that although did not perform well on the 
progression class (having a class precision of 73.95% that was the lowest among the four models).  On the 
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3-class problem (Table 20), DNN accomplished the highest accuracies for two of the three classes 
(incidence and non-exposed) having also the second highest accuracy for the progression class.  SVM 
achieved the highest-class accuracy for ‘progression’ samples and it failed in recognizing the non-exposed 
class with only 9.83% correct assignments. Overall, DNN was proved to be the most effective model in 
terms of the overall accuracy and the rest of the validation metrics. Despite being the most computationally 
intensive, DNN was selected for the rest of the experimentation on this work given that its execution time 
was not prohibitive for performing multiple runs.  

Effect of feature categories on the classification performance  

DNN is utilized in this subsection as a criterion for evaluating the discriminating capability of different 
feature categories. Results are demonstrated in different DNN architectures to assess the effect of the DNN 
structure on the classification performance. Figure 38 shows the performance of different DNN 
architectures on the 2-class problem using feature subsets that correspond to symptoms occurred at 
different time periods before the visit. The best accuracy (79.35%) was obtained for the feature subset ‘past 
month’ using an architecture of 3 hidden layers (with 100 nodes at each layer) applied after data resampling. 
The feature subsets ‘past week’ and ‘past year’ were proved to be slightly less informative achieving 
accuracies marginally higher than 78%. 

 
Figure 38. Results for different DNN architectures for the 2-class classification problem using features that corresponds to 

symptoms occurred over the: (a) last week, (b) last month and (c) last year. 
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Figure 39. Results for different DNN architectures for the 2-class classification problem using features that corresponds to 

symptoms related to: (a) pain, (b) stiffness, (c) knee difficulty and (d) other symptoms. 

 

 

 
Figure 40. Results for different DNN architectures for the 2-class classification problem using: (a)WOMAC features, (b) 

KOOS features and (c) features related with participants’ quality of life. 
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The effect of symptoms’ type on the diagnosis of KOA was also investigated. Figure 39 depicts the 
performance of DNN using features that correspond to symptoms related to pain, stiffness, knee difficulty 
and other symptoms such as swelling and grinding. Stiffness was proved to be the most informative 
symptom with the maximum accuracy of 80.3% achieved by the best DNN using only features related to 
pain. It is worth to notice that this accuracy is very close to the best accuracy achieved using the entire 
feature set. Pain-related features were the second best that led to accuracies of 78.2%-79.2% using the 
deepest DNN models. The rest of symptom types achieved lower performances in the range of 73%. Figure 
40 shows the performance obtained using WOMAC-based, KOOS-based features and risk factors related 
to health and quality of life. A 10FCV performance of approximately 80% was received using DNN models 
trained on WOMAC features, whereas KOOS and QoF features led to accuracies up to 75.33% and 
73.68%, respectively.  

 

 

 
Figure 41. Results of the best performing DNN architectures for the 2-class (blue line) and 3-class (orange line) 

classification problem using different feature subsets. 

 

Figure 41 summarizes all the classification accuracies obtained from the best performing DNN 
architectures trained on the 2-class problem (blue line) using the proposed 10 feature subsets. The same 
analysis was performed on the 3-class problem and the best accuracies per feature category are shown in 
same figure in orange. It was concluded that the addition of the third class led to a small decay in all the 
performances received over all the feature subsets. As far as the class accuracy of the non-exposed 
participants, the following remarks could be drawn from Figure 42: (i) WOMAC features provided an 
almost perfect (99.19%) identification of class 3, (ii) the feature subsets ‘stiffness’ and ‘pain’ accomplished 
a moderate performance, classifying correctly only 51.64% and 47.55% of the control participants, 
respectively and (iii) from the rest of the feature subsets, only QoF features contributed with a 12.3% per-
class accuracy for class 3. The remaining feature subsets, that do not appear in Figure 32, did not contribute 
at all in the identification of class 3 participants.  
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Figure 42. Accuracy rates for the participants belonging to class 3 (control) for different DNN architectures using features 

related to (a) stiffness, (b) quality of life, (c) pain and (d) WOMAN features. 

 

KOA diagnosis with respect to gender and age  

Table 21 cites classification accuracies obtained by the proposed methodology trained on data subgroups 
with the full feature set. The following four subgroups were considered: (i) participants older than 70 years, 
(iii) participants under 70 years, (iii) male participants and (iv) female participants. Significant difference was 
observed between the two age subgroups. Specifically, a performance of 86.95% was achieved on the KOA 
recognition for older participants, whereas the KOA diagnosis accuracy of the 70- age subgroup (80.81%) 
was closer to the overall accuracy taken on the entire dataset. Accuracies of ~81% and a negligible 
difference of approximately 0.5% were received for the male and female subgroups suggesting that gender 
is not a factor that could considerably differentiate the diagnosis capacity of the DNN models.     

 

Table 21. Classification accuracies on different data subgroups. 

 

subgroups 

 

problem accuracy 

Best model 

 
DNN architecture 

Data 
sampling 

age 

70+ 
 

3-class 86.95% 
3 hidden layers 

(100-100-100) 
on 

70- 
 

3-class 80.81% 
3 hidden layers 

(50-50-50) 
off 
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gender 

Male  
 

3-class 81.37% 
2 hidden layers (100-
100) on 

Female  
 

3-class 81.81% 
2 hidden layers (100-
100) 

off 

 

Discussion of results  

An overall performance of 80.74% was achieved in the 2-class problem by the best DNN model trained 
on the entire feature set, whereas a small accuracy decay was observed when the third class of control 
participants was added. This decay can be attributed to the inability of the model to cope with the data 
imbalance issue where class 3 is much smaller in size than classes 1 and 2. Specifically, only half of the 
control participants were correctly classified indicating the difficulty to differentiate them from participants 
of high risk to develop KOA. The inclusion of data resampling contributed to better accuracies for class 3 
participants outperforming the performance of all the DNN models trained on the original datasets 
(without data resampling). Finally, the proposed DNN was compared with well-known machine learning 
techniques and the results verified the superiority of deep learning in the KOA diagnosis task in terms of 
accuracy while being more computationally intensive. As far as the architecture of the selected DNN model, 
it was concluded that adding more layers (apart from increasing computational complexity to the training 
and testing phases), allowed for more easy representation of the interactions within the input data and 
therefore led to the highest accuracy in the case of using the full feature set. Acting as a universal 
approximator, DNN architectures with 2 hidden layers also gave high accuracy during the evaluation of the 
different feature subsets. 

  
As far as the effect of the symptoms’ type on the diagnosis of KOA, stiffness was proved to be the most 
informative symptom leading to an accuracy of 80.3%. Accuracies in the range of 78.2% - 79.2% were 
received by the deepest DNN models (with 3 hidden layers) trained on pain-related features revealing the 
importance of pain as a critical risk factor in KOA diagnosis. The rest of symptom types achieved lower 
performances at the level of 73%. WOMAC also had a significant effect on the KOA diagnosis as 
demonstrated by the approximately 80% accuracy of the DNN models trained only with WOMAC features. 
KOOS and features related with quality of life led to lower accuracies (up to 75.33% and 73.68%, 
respectively). Small difference in accuracy was observed between the three feature categories that were 
defined by the temporal occurrence of symptoms (last week, month and year). In the challenging task of 
discriminating control participants from those in high risk, WOMAC features provided an almost perfect 
(99.19%) identification of class 3, whereas the DNN models trained on the feature categories ‘stiffness’ and 
‘pain’ classified correctly only 51.64% and 47.55% of the control participants, respectively. The rest of the 
feature subsets had a minor or no effect on the identification of class 3 participants. The application of the 
proposed method in subgroups revealed that it is possible to build even more accurate diagnostic models 
that work for specific populations. The model built on the aged subgroup (70+) accomplished an 86.95% 
accuracy that was the highest reported in this work. This finding implies that local models trained on more 
focused populations could outperform the global one. The model trained on the 70- subgroup provided an 
accuracy (80.81%) closer to the performance of the global model. No significant difference was received in 
the accuracies from male and female subgroups except to a slight increase for both in the range of 
approximately 2% compared to the global model. 

Quantum Classification Perspective for Osteoarthritis Classification 
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Machine and deep learning have recently achieved impressive results in various sectors including healthcare. 
This can be attributed to the increased computational power and data availability, as well as algorithmic 
advances. However, we have almost reached the physical limits of the current solutions in terms of their 
speed whereas the size of the available datasets is still increasing. Given the above challenges, quantum 
computers may be useful for accelerating the training process of existing learning models as well as 
providing a way to learn more about complex patterns in physical systems that conventional computers 
cannot in any reasonable amount of time. 
Recent findings by Havlíček, Córcoles et al. [76] set new horizons on the effective combination of machine 
and deep learning with quantum computing altering how computations are performed to address previously 
untenable problems without requiring fundamentally new algorithms. Quantum computing is expected to 
give AI such a boost that it would be able to discover hidden patterns within huge datasets alleviating the 
computational burden of the existing deep learning algorithms. Significant progress has been recently made 
in this area towards a better understanding of quantum computers’ power for learning tasks. Quantum 
Neural Networks (QNN) have been proposed by Farhi and Neven [77] investigating how a popular 
classification task might be carried out on quantum processors. Despite being primarily theoretical, this 
study envisions the practical implementation of QNN in the near future. Issues related with the robust 
training of such networks have been also discussed by McClean et al. [78] with the aim of guiding future 
strategies for initializing and training QNNs.  
The results of this work on the task of OA classification revealed that DL offers the best solution which 
unfortunately comes with an increase of the computational complexity and therefore the execution time 
that is required for training. However, the advent of quantum computing brings a new perspective 
alleviating the computational burden of all the existing learning techniques that are physically limited by the 
current chip fabrication approaches. The arrival of full-scale quantum computers is expected to accelerate 
and boost the currently employed deep learning technique, letting the proposed AI system to find 
unexplored hidden patterns in the multi-dimensional OA database and thus provide more robust diagnosis.  

5. Interpretable models  

Developing interpretable models for use in healthcare is vital. It is important that decisions are made with 
clarity and that the processes that go into making decisions about a person’s health are easily explainable to 
the patient and understood by doctors. For a long time, logistic regression models have been the models 
of choice in medical statistics for these reasons. Every variable, or individual risk factor, have a weighting 
that can be used to explain that features input into the model making the model one of the easier types to 
use in clinical circumstances. Several of these risk prediction models make use of logistic regression [79], 
[80], [83], one uses the less interpretable, but arguably more accurate artificial neural network [82] and one 
carries out probability analysis on features and predictors that are known to be influential in OA modelling 
[81].  

Risk prediction models, even when used solely for research, have the power to help with new insights, and 
show the type of models that are able to be developed and used for helping individuals reduce their risk to 
a given disease, or at a population level to help promote change [80]. A lot of the prediction power is to do 
with the data used in the study, and on the external validation datasets GOAL performed better than the 
OAI cohort on the same model, which may give information as to the way the dataset was collected or the 
information it contains. Many risk prediction models for OA have only made use of easily obtainable 
information, such as simple biomarkers or data from questionnaires along with demographic information. 
One model showed that these extra information points offer little insight into risk prediction over what 
simple demographics alone can provide [79]. The biggest predictor into progression has shown to be minor 
radiographic changes, where interventions are still able to slow progression of the disease. The use and 
availability of risk calculators can help to educate people at risk of developing the disease on ways that they 
can reduce their risk. Providing people with a calculator that provides insight into the effect that 
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interventions focused on risk reduction can have on their susceptibility to a disease is a powerful tool in 
both education and successful management of the disease [81]. Developing a model that utilises a more 
complex technique in a risk calculator resulted in a performance improvement compared with the more 
simple logistic regression [82]. Adding unnecessary extra terms in a model results in a model hat is harder 
to understand, however in some situations adding the extra term may reduce error and can therefore be of 
benefit, especially in a situation where medical interventions can be the result [83].   

Data Description  

Osteoarthritis Initiative 

The data used in this analysis is from the Osteoarthritis Initiative (OAI) [84]. The data is available for public 
access at https://nda.nih.gov/oai/ . The specific dataset used in this analysis is AllCinical00.  

The Osteoarthritis Initiative was a multi-centre study, conducted over a 10-year period in America starting 
in 2004. The dataset is initially made up of 4796 subjects recruited based on their likelihood to develop knee 
OA. A list of inclusion criteria was advertised in various places for people to refer themselves to be part of 
the study. Figure 43 shows the advert that was used to recruit to the Osteoarthritis Initiative.  

 

Figure 43. The advert used to recruit people into the OAI Observational study. 

In the study, clinical examinations, questionnaires and telephone interviews were conducted at varying 
intervals and the results were recorded. For the initial analysis, only the primary recordings were required, 
but future analysis will make use of the data from other time intervals [85]. 

Table 22 lists the variables in the subset used as a result of the pooled investigation that looked to identify 
variables of key importance to the clinical issue relating to diagnosis of knee osteoarthritis at first 
presentation based on a list of symptoms.  

Table 22. Variables used in the final analysis, with the definitions and the possible outcome values.  
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Variable  Definition Outcome 
Age How old is the subject on the day of 

investigation? 
45-50 (1) 
50-55 (2) 
55-60 (3) 
60-65 (4) 
65+ (5) 

BMI What is the subjects BMI? BMI less than 25 (0) 
BMI more than 25 (1) 

B.LINE_SYMP Does the subject present with knee pain 
today? 

Yes (1) 
No (0) 

Gender Is the subject male or female? Male (0) 
Female (1) 

P01KPACT30 Has the subject limited their activities in 
the last 30 days due to knee pain? 

Yes (1) 
No (0) 

P01BP30 Has the subject had back pain in the last 
30 days? 

Yes (1) 
No (0) 

Knee_swell Has the subject had swelling in the knee 
in the past 7 days? 

Yes (1) 
No (0) 

Diff_upstr Has the subject climbed up at least 10 
flights of stairs in a single day in the past 
30 days? 

Yes (1) 
No (0) 

Knee_stiff_day_limit How many days has the subject limited 
their activity due to knee pain, aching or 
stiffness in the past 30 days? 

No limit (1) 
Limited 1-7 days (2) 
Limited 7-14 days (3) 
Limited 14-21 days (4) 
Limited 21+ days (5) 

Stairs.freq How often does the subject climb at least 
10 flights of stairs in a typical week, during 
the last 30 days? 

None (0) 
One day per week or less (1)  
2-3 days per week (2) 
4-5 days per week (3) 
Nearly every day or every day (4) 

Lift.freq How often does the subject lift or move 
objects weighing at least 25 pounds by 
hand in a typical week, during the last 30 
days? 

None (0) 
One day per week or less (1) 
2-3 days per week (2) 
4-5 days per week (3),  
Nearly every day or every day (4) 

 

Data Subsets 

To develop the dataset that will be used, auxiliary investigations were first required. The initial breakdown 
of this process is shown in figure 44 and figure 45.  

Clinical and Demographic data 

Removing any subjects that have missing values in variables resulted in a useable data set of 4,226 subject. 
Missing values are defined as non-imputed values, except in cases where more than one primary column 
gives rise to the new variable used in the analysis. One such example of this is the General Arthritis variable 
in the analysis which was made up of a series of questions relating to different types of arthritis. In this 
situation if any single option was present, in either a yes or no capacity then that answer was recorded for 
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general arthritis with the only exception being if all were missing then the new variable would be recorded 
as missing, and that subject removed from the analysis. These criteria resulted in the removal of a further 
n = 281 participants, leaving a sample of n = 4,226 as the updated maximum for any analysis of complete 
case subjects. 

Seventeen variables were identified using the extracted OAI data. The variables include the age, gender and 
BMI of the individual, along with information of family history, previous injuries and diagnoses of 
osteoarthritis in other joints and general arthritis in the body. Within the analysis of the clinical data, the 
training sample contained 2,145 subjects and the test sample comprised 2,081 subjects. 

Self-Reported data 

The self-reported data is made up from subject’s answers to questionnaires relating to their symptoms and 
how they are impacted, recorded at the first presentation meeting. Similar to the clinical data, many of the 
variables needed to compress in order to be suitable. One such example is left and right sides of the body. 
For the purposes of this analysis, it was not important if the affected joint was on the left or the right, so 
to combat the duplication of cases the same approach was taken as for the clinical data variables. If a person 
presented in one side of the body or the other then that would be the value taken forward, if they presented 
in both sides, the most severe measurement would be taken for categorical variables, and the average taken 
for numerical variables, if they were problem free for that variable on both sides of the body, that response 
was taken, and if missing values were present in both cases that was also recorded. The complete case 
analysis had a total sample size of n = 3711, giving a training set of n = 1868 and a test set of n = 1843.  

Self-Reported Physical Activity Data 

In a similar approach to the Self-Reported dataset, the Self-Reported Physical Activity data is made up of 
answers on questions about how much they take exercise and how this impacts them. This set of data on 
its own appears to be the most modifiable in terms of lifestyle changes that a person can make.  

Like the clinical and self-reported data, only cases that had a definite KL grade and no missing values were 
included. In the complete case any row with missing data was to be removed. The complete case analysis 
had a total sample size of n = 3309, giving a training set of n = 1691 and a test set of n = 1618. 

 
 

Figure 44. Visual representation of how the data is split, in terms of cohort size and variables after feature selection. 
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Pooled Data Model 

This approach looked at selecting the important features from the whole dataset available. To perform this 
analysis, all of the variable subsets were pooled together, and the models run on this data. The resultant 
feature set provided the subset of variables used in the main analysis. Figure 35 illustrates the process used. 

 
Figure 45. A visual representation of how the data required for the analysis was selected, and how it is made up of the 

data cohorts. 

 

Sample Selection Criteria 

The cohort considered in this analysis was only subjects without any missing values for the selected variable 
set. This is a complete case analysis [86]. In the preliminary steps of the analysis, not detailed in this report, 
a complete case and imputed analysis were used and compared. The cohort, including all of the missing 
values had a sample size of 4796. After reducing the sample by removing those who have no Kellgren-
Lawrence grade leaves a sample of 4507 subject. Finally, removing those subjects who have missing values 
in any portion of the variable sets leaves a usable cohort of 2707 subjects in the complete case analysis.  

In order to create one model that incorporates the clinical, self-reported and Self-Reported Physical Activity 
features these variable sets need to be consolidated. The final variable set from each data subset was derived 
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from analysing the results from the two analyses and selecting variables that have been selected by logistic 
regression and CART.  

The approach taken in the analysis is to combine the datasets with the Subject ID and utilise the variable 
subset dataset. This dataset would then be used in the machine learning models. The resultant analysis 
incorporates the clinical, demographic, self-reported questionnaires and the physical activity data. All 
subjects included in this analysis have a determined Kellgren-Lawrence grade attributed to them as the 
outcome variable. The variables in this subset are listed and defined in Table 22. 

Methods  

The methods used in the analysis performed here are machine-learning methods. Machine learning is an 
approach that can provide the ability to automatically learn and progress without being programmed 
explicitly. The type of machine learning used in these analyses are supervised machine learning. This is 
where there are previously labelled data that can train a model to make predictions given a set of predefined 
variables. 

Throughout this analysis, four main approaches are used. 

Classification and Regression Trees 

CART is a rule induction approach that determines univariate cut points. This machine learning approach 
can be classification or regression-based. In this decision-making, the classification approach is the most 
suitable option for the data. In clinical situations, this can be used to develop a set of questions that can aid 
clinicians in a decision-making process before invasive investigative tests are undertaken.  

When trying to choose a machine learning approach to use a number of things are taken into consideration 
at each step. Many of the decisions are made regarding how easy the models are to use and understand. 
CART analysis has the advantage of being very interpretable and easy to understand. This is, in part, due 
to being able to represent the results in different form, such as graphically or with the tree diagram itself. 
Another advantage to this method is that it is highly interpretable. Conditions to class membership are 
clearly explained meaning that the explanation about how the decisions are made are easily demonstrated, 
removing the ‘black box’ nature of machine learning. Another reason this approach is a favourite is due to 
the way the decisions made closely mirror those made by humans. 

Logistic Regression 

This is the most commonly used statistical model in medical decision support. Although it is linear-in-the-
parameters, careful discretisation of continuous variables creates a piecewise linear model with the capability 
to model highly non-linear data, which are typical in clinical medicine. As a result, logistic regression models 
are often very competitive in discrimination accuracy compared with neural networks and other machine 
learning methods, except when interactions between variables have a significant role in decision-making, in 
which case rule induction may be preferred. 

Logistic regression is a preferred method as it can also be translated into nomograms for easy clinical use 
and interpretation. The use of a nomogram can turn otherwise complex mathematical models into easy-to-
understand graphics that can show the real implications of changing behaviours to those seeking advice. 
For example, nomograms could be of particular use in educating a subject seeking medical advice how best 
to change their lifestyle in order to prevent developing OA or slow down their risk of progression.  

P(class|X)
1 − P(class|X)

=Be0#1#
2
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Equation 0-1: Logistic regression odds ratio formula 

Equation 0-1 illustrates an expression where for binary covariates {!!} the exponentials show explicitly the 
size of the effect of the variable on the odds-ratio. 

Lasso 

Lasso (least absolute shrinkage and selection operator) is a shrinkage method used in statistics and machine 
learning to perform both variable selection and regularisation to aid in prediction accuracy and model 
interpretability. The shrinkage relates to the ability to discard variables that are not as useful in the model. 
This approach is preferred over subset selection as they are more continuous and therefore have lower 
variability.  

Lasso uses F" penalisation, as in Equation 0-2. This means that by adding a penalty equal to the absolute 
sum of the coefficients the method will shrink some parameters to zero, so some variables will not play any 
role in the model. Using Lasso in this way is one approach to select features in a model. The penalty 
performs a continuous variable selection process in the model. 
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Equation 0-2: L1 penalisation term 

Multilayer Perceptron Automatic Relevance Determination (MLP-ARD) 

A multilayer perceptron (MLP) is a type of artificial feed-forward neural network [87]. The MLP is made 
up of at least three layers: an input layer, a hidden layer and an output layer. The output layer in this case is 
a binary classifier.  

For the MLP-ARD configuration, a standard MLP is used in the first instance [88]. The ARD is useful 
when it is important to know what variables are contributing the most to the classification. The ARD is to 
determine the most relevant features in the data.  

For the ARD approach to work, a separate hyper parameter U! is assigned to each group of weights 
spanning from the L)9 input variable. The hyperparameter is re-estimated through each iteration of the 
tuning process. At the end of the training stage and hyperparameters with large values indicate that an input 
has little impact on the final model. This highlights what features can be dropped from the final model.  

Partial Response Network 

The partial response network, PRN, is a method to open the black box approach of the MLP [89]. The end 
product results in non-linear univariate and bivariate partial responses from the MLP. When the 
performance of the PRN is compared with a fully connected MLP, there is usually performance 
improvements because of the PRN implementation. The bivariate responses come from modelling pairwise 
interactions in the network. Interactions are modelled up to pairwise, and all others are categorised under 
the residual modelled in the network. The PRN implementation mimics models of deep learning but offers 
the advantage of being highly interpretable.  

The way in which the PRN works can be explained in six steps, shown in Figure 46. 
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Figure 46. The six steps used to develop the partial response network. 

Preliminary Results 

Results and initial discussions relating to findings are presented for the four models used in the analysis.   

Table 23. A table of performance metrics for the different models used in the analysis, giving the area under the curve (AUC), 
sensitivity, specificity and positive predictive value (PPV). 

 AUC Sensitivity Specificity PPV 
CART 0.719 0.600 0.776 0.641 
LogR 0.763 0.674 0.716 0.613 
MLP-ARD 0.778 0.677 0.676 0.576 
PRN-Lasso 0.793 0.698 0.697 0.599 

 

The receiver operating characteristic curve (ROC curve) is a plot that graphically indicates the ability of a 
model to correctly classify binary outcomes as a threshold is altered. The area under the curve (AUC) is 
equal to the probability that a classifier will rank a random positive instance higher than a randomly chosen 
negative one [90]. In the AUC a value of 0.5 indicates a guess, with greater than this being deemed better 
than a guess, and lower than o.5 being worse than a guess.  

Sensitivity (Equation 0-3), specificity (Equation 0-4) and positive predictive value (PPV) (Equation 0-5) are 
all statistical measures of the performance of binary classification tests. The sensitivity measures the 
proportion of actual positives that are correctly identified. The specificity measures the proportion of actual 
negatives correctly identified.  

Equation 0-3: Sensitivity formula 
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Equation 0-4: Specificity formula 
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Equation 0-5: Positive predictive value formula 
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Where:  

- TP is true positive result, 
- TN is true negative result, 
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- FP is a false positive result, and  
- FN is a false negative result. 

 

CART Results 

 

Figure 47. Tree diagram showing the stages in the process to determining based on a set of questions if a subject has KOA. 

The tree diagram in Figure 47 shows the splitting criteria in a highly interpretable way that could be 
transformed into a question set for clinicians to use as a signposting tool. In the diagram, the middle number 
is the prevalence of people in that group that have knee osteoarthritis by following the conditions to arrive 
at that node. The bottom number is the percentage of the population that is covered by the node criteria.  

From Table 23 CART analysis seems to be the worst performing model, but only slightly. However, the 
drop in performance can be traded off for simplicity and ease of interpretation that the model provides. 
The performance is important, but where decisions impact people it is imperative that results can be 
explained, and the CART model offers a high level of interpretability.   

Noß Does the subject have knee pain today? à Yes 

Noß BMI over 27? à Yes 

Noß Age over 56? à Yes 

Noß Knee Swelling?à Yes 

Noß Age over 61? à Yes 

Noß BMI over 30? à Yes 
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Logistic Regression Results 

 

Figure 48. A nomogram produced from the LogR model indicating the likelihood of having osteoarthritis based on a set of 
features at different values. 

The nomogram depicted in Figure 48 related to the performance of the LogR model. The LogR model is 
a baseline indicator as it is used in clinical practise, as this is the preferred method for binary classification 
for a variety of healthcare problems. The LogR model produces an interpretable nomogram that gives every 
value a point score that relates to the chance of having the disease in question, in this instance the disease 
is KOA. The nomogram also indicates a possible confidence interval where the symptom scores could fall, 
giving another reason that this type of approach is preferred in the medical arena. The results from the 
LogR analysis indicate that the data is well suited to this type of modelling approach. 

 

 

Figure 49. Calibration plots for the MLP-ARD (A) and the PRN-Lasso (B), showing how well the models are 
calibrated to the data. 

A B 
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MLP-ARD and PRN-Lasso Results 

The calibration plots, shown in Figure 49, show how the model fit is near the pattern present in the data. 
This shows that at each step of the model, the model is adequately trained to perform predictions within 
the applicability domain. The models are well calibrated as the points are all close to the diagonal line. The 
PRN-Lasso is the best-calibrated model. 

Features after PRN-Lasso 

After the initial MLP-ARD, the lasso model selects the most important features in the data. For this dataset, 
the main features are five univariate and six bivariate effects. The features still important after the PRN-
lasso are the ones that are in the final model. In the final model, there are four univariate effects. These are: 
age, BMI, baseline symptoms (presenting with pain) and knee swelling. The effects can be shown in Figure 
50. 

As age increases, the more the effect age has on the logit, so the contribution to the outcome, the presence 
of KOA, increases. The contribution to the logit is nearly linear until about the age of 70 where a similar 
pattern can be shown with the BMI and its effects to the presence of KOA. As the BMI increases, the 
contribution to the logit also increases in a nearly linear pattern. The presence of pain symptoms at the 
investigation will increase the contribution to the logit. The subject experiencing knee swelling will increase 
the contribution to the logit as this symptom would indicate the presence of knee osteoarthritis. Both of 
these statements are in line with what is presented in the literature. 

The ROC curves show how well the models predicted the binary categories. The models vary in simplicity, 
with the most complex model being the MLP-ARD and the most parsimonious model is in fact the PRN-
Lasso, which only uses four of the eleven input variables with the structure of a Generalise Additive Model, 
which is self-explanatory.  

A further brief analysis was carried out about the relationship between the standard radiological indicator 
of OA (KL score) and reference measures of pain. It is sometimes commented that the KL score does not 
appear to correlate at all with the experience of pain. 

In order to elucidate this relationship, we analysed the observed and inferred KL score against both KOOS 
and WOMAC. The results are similar so we report them for WOMAC. The results shown in Figure 52 
indicate that while observed KL and WOMAC seem entirely uncorrelated, this may be due to subjective 
effects that add noise to the estimated likelihood of clinical KL, which is the inference made by the statistical 
model from the overall population, as the log-odds-ratio (logit) shows a clear correlation with WOMAC. 
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Figure 50. Partial response graphs for the variables in the final model as generated by the PRN. Graph A depicts age, B 

is BMI, C is presence of pain at initial investigation and D is knee swelling. 

 

CART Logistic Regression MLP-ARD PRN-Lasso 
    
A 

 

B 

 

C

 

D 

 

AUC = 0.719 AUC = 0.763 AUC = 0.778 AUC = 0.793 
   
Figure 51. ROC curves for the different approaches used in the analysis. A is the CART approach, B is LogR, C is the 

MLP-ARD and D is the PRN-Lasso. 



OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D6.5                                                                                                                                79     
 

 

 
(a)                                                                 (b) 

Figure 52. Relationship between radiological OA measured by the KL score and perception of pain measured by the 
WOMAC score. a) Scatterplot of observed KL vs. WOMAC. b) Scatterplot of the logit of inferred KL derived from 

logistic regression (this is the sum of beta*x scores) against the logarithm of self-reported WOMAC. 

The diagnostic risk model was validated externally using data from the Multicenter Osteoarthritis Study 
(MOST) (n=831 after pre-processing). This verified the accuracy of the model with clinical variables, 
although some of the variables needed to be mapped to those used by the MOST data set 

Table 24. Mapping of variables from OAI to the MOST data set.  

Variable Definition 

knee_stiff_day_limit In the last 30 days, how many days has the subject limited activity due to knee 
pain/aching/stiffness? 

0 days/ 1-7 days/ 7-14 days/ 14-21 days/ 21 or more days 

Diff_upstr Does the subject have difficulty getting upstairs? Yes/ No 

Knee_swell In the past 7 days, has the subject had knee swelling? Yes/ No 

P01KPACT30 In the past 30 days, has the subject limited their activity due to knee pain? 

Yes/ No 

Gender What is the subject’s gender?Male/ Female 

B.LINE_SYMP Does the subject present with knee pain today? Yes/ No 

BMI What is the subject’s BMI? 

Less than 25/ 25 or more 

AGE How old is the subject at the assessment? 

45-50/ 50-55/ 55-60/ 60-65/ 65+ 

 



OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D6.5                                                                                                                                80     
 

Table 25. Summary statistics of external validation of the diagnostic model for the MOST data set. The cut-point is the 
prevalence of KL2+ in the OAI data. 

Measure Value 

Accuracy 0.6859 

Sensitivity 0.9052 

Specificity 0.2353 

PPV 0.5421 

NPV 0.7128 

AUROC [CI] 0.6697 [0.631, 0.708] 

 

 

Figure 53. ROC curve for validation of the diagnostic model with data from the MOST study. 

Prognostic modelling 

Prognostic modelling of the OActive is beyond the timescale of the project. However, insights from such 
models developed using the OAI data are relevant to deeper understanding of the phenomenology of KOA.   

Proportional hazards regression was applied to the OAI data, specifically the recruitment cohort comprising 
subjects with KL 0 or 1 at first presentation, followed-up for the occurrence of KL 2 or above, which is 
the event of interest.  Our study was framed with a timescale of 5 years following which all surviving cases 
are censored.  The term survival in this study means the period of time when the subject is disease free. 
Stepwise model selection was again applied, as in the case of logistic regression, with appropriate 
penalisation for model complexity, and the risk index i.e., the time-independent linear covariate effects in 
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the Cox model, was stratified with the log-rank test, resulting in two statistically significant populations, 
one with high and the other with moderate survival, which we term low and high risk, respectively. 

 
Figure 54. Observed and predicted time-to-event curves for the OAI data, modelling time to KL2+ from KL ) or 1 at 

first presentation. 

 
Figure 55. Corresponding figs to the previous figure, for external validation of the prognostic modelling by application to 

the MOST data set. 

 

Nomograms 

A key part of risk model development is transparency to the end-user. To this purpose linear models were 
applied, not just because they are interpretably but also because their performance is statistically comparable 
with those of machine learning models for the OAI data set. This is most likely the result of the relatively 
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high levels of noise in this observational clinical data set. Indeed, the linearity of dependence on covariates 
was explicitly verified by modelling with Partial Response Network. 

Visualisation of the diagnostic and prognostic models was made available through the app interfaces with 
nomograms in figs 56-57. 

 

 
Figure 56. Snapshot of the app with nomogram feature for the diagnostic model. The red points represent the component 
scores for the example subject, whose details are entered in the column on the left of the figure. The total score is also show, 
mapping to a predicted probability at the bottom of the figure, where the cut-point represents the prevalence of KL2+ in the 

OAI data set. 
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Figure 57. Snapshot of the app with nomogram feature for the prognostic model. The red points represent the component 
scores for the example subject, as in figure 46. This time the subject is allocated to the high (purple) or low (green) risk cohort 

according to the cut-point in the scale at the bottom of the figure. In both nomograms, the graphics clearly show the 
contribution of each risk factor to the final inference.  Changing any of the risk factors carries out scenario analysis, for 

instance to see the effect of different categories of BMI. 

6. Conclusions 

In this Deliverable (D6.5) are presented the working prototypes of the personalised predictive OACTIVE 
models used either for prevention, diagnosis or even during the intervention stage. Specifically, Section 3 
presents four approaches of personalized prediction models. Ιn Section 4 methodologies for non-invasive 
OA diagnosis are presented and finally in Section 5 Interpretable models are shown. 
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Figure 58. Hyper-modelling framework of OACTIVE. 

 

The first approach of the personalized prediction models focuses on the development of a ML-based 
methodology capable of (i) predicting KOA progression (and specifically KL grades progression) and (ii) 
identifying important risk factors which contribute to the prediction of KOA. The proposed FS 
methodology combines well-known approaches including filter, wrapper and embedded techniques 
whereas feature ranking is decided on the basis of a majority vote scheme to avoid bias. Finally, a variety of 
ML models were built on the selected features to implement the KOA prediction task (treated as a two-
class classification problem where a participant is classified to either the class of KOA progressors or to 
the non-progressors’ class). Apart from the selection of important risk factors, this work also explores three 
different options with respect to the time period within which data should be considered in order to reliably 
predict KOA progression. The nature of the selected features was also discussed to increase our 
understanding of their effect on the KOA progression. After an extensive experimentation, a 74.07% 
classification accuracy was achieved by SVM on a group of fifty-five selected risk factors (in dataset D).  

Furthermore, the second approach consists of two works. The purpose of the first work is: (i) to identify 
different clusters of KOA pain progression, (ii) to identify informative parameters that are relevant with 
pain progression from a big pool of risk factors that are available in osteoarthritis initiative (OAI) database 
and (iii) to build ML models that can predict long-term pain progression using baseline data. To accomplish 
the aforementioned targets, we built a ML empowered methodology capable of achieving state-of-the-art 
accuracy results with the minimum possible number of features. Specifically, we have achieved an 84.3% 
for the prediction of pain on the left leg, and an 82.5% on the right leg. An important observation here is 
that these high accuracy scores were achieved by using a relatively small subset of features (25 features for 
the left leg, and 20 for the right leg) that share similar characteristics. It was also observed that the most 
important features for the pain progression prediction are related directly with the pain on each leg 
respectively. Furthermore, the second work focuses on the development of patient-specific models of KOA 
prediction with a special emphasis on pain progression. The presented study contributes to the 
identification of different clusters of KOA pain progression, the selection of informative and robust 
parameters that are relevant with pain progression and the development of AI-powered predictive models 
that could be used for patient-specific prediction of pain progression. 

Moreover, the main objective of the third approach was the accurate prediction of JSN in KOA patients 
based on a machine learning pipeline trained on multimodal data from the OAI (725 features in total were 
considered). To identify and group patients with and without JSN progression a clustering process 
(Deliverable 6.3) was initially performed on the JSN progression based on the JSM outcomes of patients 
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over the first five visits. Afterwards, for the identification of the most important features for the related 
clusters discrimination (progressing versus non-progressing patients), a hybrid feature selection technique 
was employed. Finally, the selected features were employed for the training of various ML models in order 
to predict JSN in KOA patients. The outcome of the ML models indicated that the LR model achieved the 
best performance for the left leg with a 78.3% accuracy for 164 features, while for the right leg, the SVM 
model dominated with a 77.7% accuracy for 88 and 90 features. However, the best overall performance 
was achieved by the second strategy where the data from both legs were combined. Specifically, the LR 
model achieved an 83.3% accuracy for a significantly lower number of features (29). The overall validation 
and the interpretation of the models will be taking place in Deliverable 9.3.  

The fourth work has the aim to increase the generalization using an evolutionary Machine Learning 
approach. Specifically, this work focuses on the identification of important and robust risk factors which 
contribute to KOA progression. The proposed FS methodology relies on an evolutionary machine learning 
methodology that leads to the selection of a relatively small feature subset (35 risk factors) which generalizes 
well on the whole dataset (mean accuracy of 71.25%). We investigated the effectiveness of the proposed 
approach in a comparative analysis with well-known FS techniques with respect to metrics related to both 
prediction accuracy and generalization capability.  

In Section 4 of diagnosis models, in the first task we built classification models with aim to present a 
machine learning workflow for diagnosis of KOA with a focus on post-hoc explainability (Deliverable 9.3). 
Overall, understanding the inner workings of ML algorithms is the most important. So, as next step we will 
validate and will use the SHAP theory, because explainability refers to being able to trace and follow the 
logic ML algorithms use to form their conclusions. The second approach presents a methodology, which 
shows potential for non-invasive OA diagnosis. Here we demonstrated its potential to reliably identify 
informative risk factors from self-reported clinical data and recognize at a certain level participant with 
symptomatic KOA or being at high risk of developing KOA in at least one knee. A quantum computing 
perspective of the future application of the proposed methodology is also discussed highlighting the 
potential to massively speed up certain types of classification problems. Our method may promote future 
development and clinical implementation of non-invasive tools for KOA diagnosis and prediction. Future 
work includes the development of machine learning and deep learning models that could predict the 
progression of the disease using selected risk factors. More emphasis will be given to local prediction models 
that will be trained on data subgroups defined by parameters such as body mass index combined with 
demographics and social indicators. The methodology will be finally extended to include parameters from 
more disciplines including nutrition, medical history, biomarkers and physical measurements of participants 
performed in the clinic. Research at the intersection of machine learning and clinical research offers great 
promise for improving OA related research, advancing clinical decision-making and accelerating 
intervention programs. To enhance appropriate use of machine/deep learning techniques and stay abreast 
of new developments in advance analytical techniques, open data and scientific tools must be dynamically 
encouraged within the OA research community. 

Interpretable models provide decisions which are made with clarity and that the processes that go into 
making decisions about a person’s health are easily explainable to the patient and understood by doctors. 
For this task insights about the baseline presentation with and without clinical manifestation of 
osteoarthritis were derived from statistical and machine learning models. This produced a new risk model 
based on clinical indicators and questionnaire reports at first presentation. Three interpretable models were 
presented, rule based, logistic regression and the partial response network which is a self-explaining neural 
network, with the finding reported at the IDEAL 2019 conference [91]. Further, the inferences made about 
KL scores were found to correlate reasonably with self-reported pain score WOMAC, indicating that it may 
be possible to separate the expected effect of radiological disease on pain from an additional subjective 
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additive component. The KL models are transparent so can represented by nomograms which indicate the 
weight of evidence in making individual inferences for each subject.  
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