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 Summary 

The purpose of the Deliverable 6.6 is sensing and gathering information about the patient’s on motion 

information, joint kinematics, movement detection, and gait analysis. It also gathers information from many 

other sources. The perception layer stores this information in a data warehouse. By utilizing an ontology-

based framework, the goal of which is the coherency and security of the data and the privacy of the patients. 

The overall procedure aims to gather the necessary information for the personalization of the treatment 

plan. 

 

This report refers to Deliverable 6.6, which relates to the OACTIVE WP 6, “Hyper-modelling framework 

empowered by big data and deep learning” led by CERTH and specifically Task 6.6 “Ontology-based 

framework for data standardisation”, also led by CERTH. 
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 System general architecture 

The architecture of the system and the relation with the WPs is shown in Figure 2.1 below. As explained in 

the System Description Section above, the main input into the deep learning hypermodel core of the 

OACTIVE system will be the data collected through clinical studies and OA registries informed by the 

mechanistic and phenomenological models in WPs 3, 4 &5. The bidirectional arrows indicate that the 

hypermodeling core will be running and updated continuously with additional data as these are generated 

from the clinical studies or mined from various OA registries. Likewise, the outcome of the hypermodeling 

component will be tested and validated in the existing databases and improvements and refinements of the 

prediction models will be rerun and re-tested again continuously to improve the sensitivity of the models 

and the predictions as indicated by the bi-directional arrows between WP 6 and WP8. Refinement of the 

hyper-model and identification of critical prediction factors will also be informing the development and 

refinement of the augmented reality and gait retraining tools as indicated by the third bi-directional arrow 

in the schematic system architecture description below. 

 

 

Figure 2.1: Schematic description of the OACTIVE system architecture and the relation with the 

 

1. Mechanistic modelling framework of the musculoskeletal system 

The development of in silico multiscale biomechanical models of healthy and knee joints with OA based 

on subject-specific joint and tissue level experimental mechanics that are capable of predicting tissue loading 

and responses in individuals and provide inputs for the mathematical ‘hyper-models’ accounting for 

mechanical loading of tissues in different conditions and individuals. These mechanistic models include: 

− Development of personalized neuromusculoskeletal models used to predict knee OA onset and 

improve treatment. 

− Development of novel calibration pipelines for the transformation of generic musculoskeletal 

models to personalized models by scaling anatomic geometry, kinematics and muscle kinetics and 

activation parameters.  
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− Development of organ and tissue level models for the incorporation of detailed bone and 

cartilage models capable of predicting tissue responses following estimation of forces from the 

rigid body musculoskeletal models.  

 

2. Systemic health and inflammation modelling framework 

The modelling of biochemical health indicators and inflammatory biomarkers that is used to assess a 

number of different systemic and joint condition indicators. Serum biochemical markers (3 Prognostic 

Biomarkers of Bone and Cartilage Degradation and Synthesis and 3 Inflammatory Biomarkers) are 

monitored and correlated with the clinical outcomes. These are used to examine the relationship between 

biochemical markers for OA and clinical diagnosis as well as the progression of disease in affected 

individuals or elevated inflammatory that precedes the development of the condition. In detail: 

− Development of a system of prognostic biomarkers of bone and cartilage degradation and synthesis 

applied to OA based on serum markers.  

− Development of a system of inflammatory prognostic biomarkers for OA monitoring based on 

biofluid samples (blood, urine and synovial fluid).  

 

3. Behaviour, social, environmental modelling framework  

To detect a user's physical, mental and social behaviours and identify higher-level physical, 

mental/emotional, and social states of the user and information used for providing individualised diagnosis 

and recommendations for patient-specific treatments. In detail:  

− Assess and model behaviour of users related to physical activity using flexible platforms of wearable 

body sensors.  

− Development and implement behaviour analysis to create a set of behaviour models and “normality 

patterns”.  

− Investigate the effect of socio-economical risk factors including (a) Compositional attributes of 

socioeconomic status at the individual level, (b) Social context (community-level) risk factors, (c) 

Personal risk factors associated with OA, including smoking, age, gender, occupation-tasks, BMI 

(i.e., obesity), injury, family history, race and (d) Community perceptions, will be also included with 

mediators and moderators and dimensions of psychological influences.  

 

4. Hypermodelling framework empowered by big data.  

The hyper-modelling framework of OACTIVE which includes:  

- Data management mechanisms to ensure a high level of data quality and accessibility for the big 

data analytics applications.  

− Development of data pre-processing algorithms to improve data quality and consequently facilitate 

the efficiency of the data mining task. Tools: Discretization algorithms, Instance Selection, 

sophisticated undersampling/oversampling techniques, filtering/denoising, data transformation  

− Development of data mining techniques for knowledge discovery using interpretable rule-based 

models to provide insights for the understanding of OA disease development and its progression. 

Identification of patient-specific significant risk factors associated with the onset as well as factors 

related to OA progression using computational efficient Feature Selection algorithms.  

− Development of the ICT deep learning infrastructure. (1) Machine learning Tools: neural networks, 

support vector machines, decisions trees and discriminant analysis, (2) Deep Learning Tools: fully 

connected neural networks, convolutional neural networks and recurrent neural networks on state-

of-the-art GPU-accelerated tools. 
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− Design and implementation of personalized predictive Decision Support (DS) models that address 

specific OA stages in the disease continuum of a patient (DS-early, DS-mild, DS-mod and DS-

treat).  

 

5. Ontology-based framework for data/model reusability and sharing. 

- Employment of model and data encoding and exchange standards for multiscale modelling to 

ensure model reproducibility and sharing. 

- To develop modular approaches to ensure that self-contained models are developed and validated 

independently before being incorporated into a hierarchy of imported models. 

- Employment of Semantic web technology, to make knowledge interpretable by web agents, thereby 

enabling the integration and re-usability of heterogeneous resources for knowledge discovery. 

- Issuing of authentication mechanisms (via X.509 certificates) assuring the secure access to data. 

- Employment of enhanced replication mechanisms to warrant the integrity of data including the 

prevention of loss. 

- Insurance of a certain k-anonymity using pseudo-anonymization techniques. 

 

6. Personalised interventions using Augmented Reality (AR) 

− Issuing personalized intervention relying on the AR gaming concept. 

− Employ assistive, real-time visual and vibrotactile feedback for OA gait retraining. 

− Calculation of biomechanical indicators for assessment and clinical decision support. 

− Implementing personalized stimuli to impact on game task completion performance. 

− The application of the model in knee OA patients to investigate what effect simulated 

biomechanical treatments have on the mechanical load characteristics in knee joint structures in 

different groups of knee OA patients. 

 

7. Technology Validation 

To test the OACTIVE system using a comprehensive validation strategy that includes: 

▪ Clinical studies in human populations for the validation of the efficiency of the non-invasive risk 

factors. 

− Validation scenario A: early detection of OA (population size>100 patients, where: LAFE) 

− Validation scenario B: system evaluation in elderly people (population size>130 patients, 

where: NIC – hosted in Apollonion Private Hospital in Cyprus) 

− Validation scenario C: post-traumatic assessment in athletes (population >100 patients, 

where: AMIMUS) 

i. In vitro Clinical trials: to validate in vitro the relationship between cellular responses of 

osteochondral tissue and (a) biomarkers and imaging data (diagnostics), and (b) the tissue level 

mechanical activation during AR rehabilitation (therapy). 

ii. Validation in large data registries (i) Osteoarthritis Initiative (OAI) >5000 patients, >100 months 

follow-up. 
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 Ontology - Based Framework Architecture 

The purpose is the semantic annotation of data elements data integration, of matching data elements, from 

different data sources to be supported.  By utilizing semantic web technologies web agents will be able to 

interpret the knowledge, as a result, the integration and re-usability of heterogeneous resources for 

knowledge discovery. 

Ontologies were chosen as the structure for the reference data model since they provide the means and 

methods to integrate the various standards’ data models into one unique reference model without dropping 

the original notation of the individual standards. In addition, using ontologies ensures that data consistency 

is done on a semantic level and that semantic reasoning and inference can be carried out. 

The volume and complexity of patient data are steadily increasing in personalised medicine. The 

identification of matching data elements in different sources applied through semantic annotation of data 

elements. These annotations should be equable, in terms of coding, (the same annotations must be 

contained to matching data elements) but large terminologies (SNOMED CT / UMLS) do not provide that 

type of coding. To achieve it, semantic annotations are re-used for the matching data elements in the 

metadata repository. ISO/IEC 11179 Standard used for data elements representation. 

 

 

Figure 3.1: Schematic representation of the ontology-framework 

 

The data model, with uniform semantic annotations, is implemented with the use of the ODMedit tool. 

ODMedit tool is a semi-automatic approach where data integration is simplified if the same code is applied 

for all data items with the same (or at least very similar) meaning. By re-using annotation codes, we aim to 

achieve equable codes. The portal of medical data models (MDM) used as an open-access repository for 

metadata in CDISC ODM format with ~5,800 forms and ~450,000 data elements (https://medical-

datamodels.org/). 

The annotation of new data items is achieved through an initial search, of the repository, for items with the 

same names. The determination of the new data item’s meaning, over existing data, is done by an expert. 

Experts can select codes according to the maximum specificity principle. On the other hand, for items that 
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an annotation is not available in the repository, matching annotation codes are retrieved from UMLS 

diagrams. In case a single matching code does not exist, post coordination is applied. In this case also, 

experts identify matching codes. When the next data item, with the same meaning, must be annotated, 

annotation codes are available. This enables equable annotation of data items, even when several UMLS 

codes with similar meanings are available. The decision whether two data items have the same meaning is 

taken semi-automatically to ensure high coding quality. 

The scope of the evaluation is to demonstrate that this software tool is able to perform uniform semantic 

annotation for real data models from clinical studies. CDISC develops international data standards for 

clinical research. As a result of the Clinical Data Acquisition Standards Harmonization (CDASH) initiative, 

CDISC developed a set of forms frequently used data items, for instance regarding demographics data or 

adverse events. These items are coded with CDASH codes. It is determined how many of these data items 

can be annotated with UMLS codes. Correctness of UMLS codes is assessed by manual comparison with 

CDASH codes. 

In addition, a set of data models from the MDM portal was manually processed with ODMedit to determine 

technical feasibility of this tool. 

ODMedit is intended to foster uniform semantic annotation. A random set of data elements from an 

established data standard was selected to test this feature. For each of those data elements available UMLS 

codes were identified with the UMLS Metathesaurus Browse. Suitable codes were identified from the 

output of the UMLS Metathesaurus Browser by manual review. Available annotations in the MDM portal 

were analysed for each data element regarding uniform semantic annotation and compared to UMLS codes. 

The data management plan describes plans for creating, organizing, documenting, storing and sharing data. 

It takes into account issues such as data protection and confidentiality, data preservation and curation and 

provides a framework that supports researchers and their data throughout the course of their research and 

beyond. It is constantly updated describing what kind of research data are generated, what policies apply to 

the data. Funding and legal policies and data management practices as backups, storage, access control, 

archiving will be determined. It is clear who owns and has access to what data and who is responsible for 

each aspect of the plan. Moreover, partners try to clearly describe which data will retain value after the end 

of the OACTIVE project and how its reuse will be enabled and how the long-term preservation ensured 

after the original research is completed. Partners share research data generated allowing others to replicate, 

validate, or correct their results, thereby improving the scientific record. This increases the research’s 

integrity and replication as those who make use of their data and cite it in their own research will disseminate 

the results possibly in other disciplines, sectors, and countries. Moreover, partners can identify, retrieve, 

and understand the data themselves after they have lost familiarity with it, perhaps several years hence. 

Partners do not share specific parts of their research data if the achievement of the project's main objectives 

would be jeopardized by making those specific parts of the research data openly accessible. They do not 

also share data that they may not have the legal right to share, maybe because the parts of them belong to 

other authors or entities. 

There are a lot of challenges in signal processing of the multi-scale data, given their current state and the 

non-standardized structure. But there are opportunities in each step of the process towards providing 

systemic improvements. Despite the need for further research in the area of data wrangling, aggregating, 

and harmonizing continuous and discrete medical data formats, there is also a similar need for the 

development of novel signal processing techniques specialized towards physiological signals. Research 

relevant to biomarkers and clandestine patterns within biosignals to understand and predict disease cases 

have ability in providing actionable information. However, there are opportunities for developing 

algorithms to address data filtering, interpolation, transformation, feature extraction and feature selection. 

Furthermore, with the notoriety and improvement of machine learning algorithms, there are opportunities 
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in improving and developing robust Clinical Decision Support Systems for clinical prediction, prescription, 

and diagnostics. 

The computational modelling layer will provide subject-specific information, based on principles of physics 

and physiology, that will be used to define the appropriate personalized intervention strategy. The input 

data may also originate from other activities of the OACTIVE project, e.g., biomarkers, behaviour, hyper-

modelling, etc. Appropriate abstraction barriers (data abstraction) through big data analytics and machine 

learning techniques, are used to decouple the implementation from the input data representation in order 

to provide a modular and expandable design. The sensory information, that can originate from a variety of 

sensor devices, such as Inertial Measurement Units (IMUs), motion capture systems, Force-plates, will be 

analysed, stored, processed and compared against the optimal performance dictated by the Decision 

Support System (DSS). Convenient interfaces should be created so as to enable the support of multiple, 

heterogeneous devices. The information must be synchronized using data synchronization techniques, such 

as network time protocol. Appropriate filtering and pre-processing will be applied to refine and remove any 

artifacts (e.g., noise) that can negatively affect the processing phase. Finally, the necessary information 

required by the personalized intervention module will be extracted. The personalized intervention module 

will fuse sensory and other information in order to define the subject specific strategy. Multiple 

rehabilitation strategies will be specified based on the expert’s knowledge and results. This module will 

choose the most appropriate strategy of action according to the provided information in real time. 

 

 

Figure 3.2: OAcitve’s layered architecture overview 
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Figure 3.3: Data collection and processing structure 

Ontology - Based Architecture is a three-layer architecture (Figure 3.2), namely, Data Source layer, Core 

layer and Utility layer. 

i. The Data Source layer is the layer where the data from all sources is collected. It includes medical 

examination data, sensor data, signal data, and textual information data. All the collected data is 

used as input for data structural analysis and information extraction through computational models.  
ii. The Core layer, in this layer, the collected data, are submitted in a harmonization process. This way 

it ensured that all the different sources of data will have the same numerical value ranges and 

categorical levels interpretation. Afterward, the content’s structural analysis, of each variable, is 

applied to ensure the validity of the data collected. Finally, the final two-step procedure of the 2nd 

layer is storing and distributing, strictly and practically, the information extracted from the 

necessary OACTIVE models. 

iii. The Utility layer is the layer where personalised interventions, alerts, analytics, and visualizations are 

extracted as an output of the whole procedure, with respect to the upper ontology framework. 
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3.1 Data Source Layer 

 Clinical Data Collection 
OACTIVE uses medical imaging data from MR, X-Ray Imaging,  to determine the patient’s body and knee 

geometry. Marker-based and inertial sensors data for kinematic calibration. Ground reaction forces, and 

contact foot pressure data, calibrated from dynamometers, for kinetic calibration and also uses motion, 

load, and muscle activity, from EMG, for neurological calibration. The OACTIVE creates biomechanical 

models and simulations that fuse data about human movement, including joint kinematics, joint moments, 

and ground reaction forces, to produce estimates of muscle forces, muscle activations, and joint reaction 

forces. 

Also, from the MRI, OACTIVE derives a full organ model. Bones are modelled, to provide all 

biomechanical indicators predicted by the model. Muscle and joint forces computed by the body model 

are applied as boundary conditions to the bone model, which predicts displacements, stresses, and strains 

at each point of the bone, during the entire motion. Knee computational models developed based on finite 

element representation. The geometry of the knee will rely on the MRI of the subject’s anatomy. Image 

segmentation will establish the three-dimensional reconstruction of the tibiofemoral and patellofemoral 

joint components. Predominantly, the femur, tibia, and patella. Femoral, tibial, and patellar cartilage. Medial 

and lateral collateral ligaments, anterior and posterior cruciate ligaments, and patellar ligament. Menisci, 

and other passive components of the capsule, that may be deemed necessary for the investigation of 

tibiofemoral and patellofemoral joint mechanics. Finite element analysis is the preferred modelling and 

simulation tool for the proposed project due to its capacity to provide predictions of joint mechanics (knee 

kinematic-kinetic response) and bone or tissue mechanics. Based on the research question, abstractions 

(anatomical and material) both at the joint and bone level can be changed easily to balance the accuracy 

needed to address the scientific (or clinical) question and the cost required for the analysis.  

Data generated from biomarkers used for the tissue level approach. The purpose of this tissue level 

engineering approach is to explore the potential of OA progress, by measuring specific molecular markers 

(biomarkers) in serum and fluid samples. Biomarkers, biomarker panels and methods for diagnosing 

osteoarthritis are disclosed, using measurement of the expression level of certain polypeptides in a test 

sample from a subject. The biomarkers include anabolic, catabolic as well as inflammatory molecules 

representing diverse biological pathways. Specifically, molecules that are released into biological fluids, 

including blood, during matrix metabolism of articular cartilage, subchondral bone, and synovial tissue are 

potential biochemical markers for the detection and monitoring of the process of osteoarthritis. The degree 

of articular inflammation will be associated with the disease progression and thus inflammation 

contributing to articular damage. To our knowledge, a comprehensive model correlating the secretion of 

OA biomarkers in the blood serum and the progress of the disease has not developed yet. 

Moreover, osteochondral tissues from patients undergoing total joint replacement harvested from the post-

surgery waste and cultured in vitro for up to 4 weeks within our osteochondral bioreactor that allows to 

separately interrogate the cartilaginous and osseous components. Cartilage cultured in serum-free, pro-

chondrogenic medium and bone cultured in pro-osteogenic medium. Tissues from areas of 

healthy/macroscopically minimally damaged cartilage compared with tissues from areas of moderate to 

severe OA, assessing at different time points the following: (a) presence in the effluent media for cartilage 

and bone of catabolic markers, in particular of the known biomarkers in table 1.3.1, as well as bone markers 

such as the ratio of osteopontin (OPN)/RANKL, crosslinked collagen type I N-telopeptide, NTX1, and 

osteocalcin (OCN), and of metalloproteinases and other enzymes such as Cathepsin K; (b) microCT of 

the subchondral bone and of cartilage after the addition of an appropriate contrast agent; (c) quantitative 

real time PCR (qRT-PCR) for cartilage genes (collagen 2, aggrecan, collagen 10, Sox9, MMP-1, MMP-3, 

MMP-13) and bone genes (RUNX2, COL-I, OCN, BSP, and OPN accounting for osteoblasts, and 
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RANKL, TRAP, Cathepsin K, and MMP9 accounting for osteoclasts); (d) histology (Haematoxylin and 

Eosin, Alcian Blue, Alizarin Red, Masson’s Trichrome, etc.) and immunohistochemistry (collagen II, 

collagen X, ALP, RANKL, TRAP, etc.). Imaging and biomarkers readings in patients matched the 

corresponding data obtained which will serve to relate clinical imaging and biomarkers with the 

biochemical and gene expression signature at the cellular level. The presence of bone is particularly 

important both for matching bone microCT data and for the key role bone in cartilage metabolism in 

health and disease. The use of the osteochondral bioreactor allows accounting for mechanisms of cartilage-

bone crosstalk which could not otherwise be assessed. Human samples from cadavers serve as control to 

verify that osteochondral units extracted from macroscopically pristine areas of surgical wastes after knee 

replacement do not present a biochemical, structural, and cellular profile too different from normal. Also, 

porcine osteochondral plugs can be used as an alternative reference for healthy tissue. The results provide 

an initial cellular level input to the development of the hypermodel, thus covering the cellular scale. 

The objective is to examine the relationship between biochemical markers for OA and clinical diagnosis. 

These results were used for the development of advanced computer modelling and simulation tools in order 

to be used in early diagnosis or prognosis of the disease. In detail, this aspect includes: 

• Clinical evaluation of patients.  

• Determination of serum concentrations of selected biomarkers levels on patients diagnosed with OA. 

• Investigation of exosome biomarkers in terms of their relationship with OA development and 

progression.  

• Develop a method to correlate/compare concentrations of biomarkers with clinical diagnosis and OA 

stage. 

 

 Biomarkers 
Osteoarthritis (OA) is a degenerative disease of the joints and the most common form of arthritis that 

causes pain and mobility limitation and, thus, reduces independence and overall quality of life. Osteoarthritis 

is a complex disease in which biochemical and biomechanical factors are involved and occurs mostly in the 

weight-bearing joints of the lower limbs, such as the hip and in particular the knee in addition to the hands 

and spine, although almost any joint can be affected. Structurally, the whole joint is usually involved 

including diffuse and progressive loss of articular cartilage with concomitant changes in underlying bone 

(osteophyte growth and increased thickening or sclerosis) and soft tissue structures in and around the joint 

(synovitis, meniscal degeneration, ligamentous laxity and muscle weakness). These changes affect 

musculoskeletal function and body movement in general, reducing general mobility and increasing disability 

with age. It is, therefore, of particular concern that OA is one of the most common diseases affecting old 

age and the single most important cause of disability in older people. 

Our project establishes a concept to automatically infer system-level mechanistic models of development 

from collected data. The analysis and automated reasoning convert the large number of secondary 

phenotypes, namely the expression of tissue-specific markers in terminal cells, into the affected cells, which 

allows the additional inference of developmental mechanisms. Importantly, the cellular-resolution 

phenotype data will enable us to design novel systems biology analyses with rich biological insights. The 

analyses will allow us to construct an explicit model of how cell differentiation progresses and to predict 

the gene-gene and cell-cell signalling networks during disease progression. The aim is to examine the 

relationship between biochemical markers for OA and clinical diagnosis. These results are used for the 

development of advanced computer modelling and simulation tools in order to be used in early diagnosis 

or prognosis of OA. The partner NIC assessed 6 different serum biochemical markers (3 Prognostic 

Biomarkers of Bone and Cartilage Degradation and Synthesis and 3 Inflammatory Biomarkers) and 

correlated them with the clinical outcomes.  
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Although OA was considered as a non-inflammatory joint disease it is recently demonstrated that specific 

inflammatory mediators are produced by articular tissues in OA and probably implicated in the 

pathogenesis and progression of the disease. Specifically, it is demonstrated that cytokines and 

prostaglandins produced by cartilage promote cartilage degeneration. On the other hand, synovitis is 

associated with greater risk of cartilage loss in patients with knee OA. 

 

Table 1.3.1.: Validation and quantification of OA biomarkers by NIC 

I. Prognostic Biomarkers of Bone and Cartilage Degradation and Synthesis 

Biomarker Process 
BIPEDS1 

classification Preliminary findings ELISA type 

Serum 
COMP 

Cartilage 

degradation 
Knee: BPD Elevated level in Knee OA 

Competitive 

inhibition 

Serum HA 
Osteophyte 

burden, synovitis 
Knee: BPED Elevated level in Knee OA Sandwich type 

Serum CPII 
Type II collagen 

degradation 
Knee: D Elevated level in Knee OA 

Competitive 

inhibition 

II. Inflammatory Prognostic Biomarkers 

Biomarker Presumed source 
Inflammatory biomarker 

subgroup 
Preliminary 

Findings ELISA type 

IL-1β 
Cartilage, Synovium, 

Bone 

Cytokine / chemokines, 

complement and lipid mediators 

Associated with 

Knee OA 
Sandwich type 

TNF-a Cartilage, Synovium, 

Bone 

Cytokine / chemokines, 

complement and lipid mediators 

Elevated levels 

in Knee OA 
Sandwich type 

IL-6 
Peripheral blood 

leukocytes 
Transcriptomic biomarkers 

Elevated levels 

in Knee OA 
Sandwich type 

 

In LEITAT already known biomarkers and under clinical validation process firstly investigated. These 

biomarkers are followed by means of ELISA, mostly commercially available. Also, we carry out studies of 

a new source of biomarkers on samples coming from patients being under treatment, so the evolution of 

the patient has been monitored. From fluid samples (blood, urine and synovial) exosomes isolated and 

characterised by miRNA content. Exosomes purified from samples by means of ultracentrifugation, 

andmiRNA is isolated for separate analysis.. This study is completed by a metagenomics providing a profile 

specific for each patient type. Faecal samples taken for each patient from HULAFE. For metagenomics 

analysis, bacterial 16SrRNA has been sequenced and compared through a bioinformatic analysis, before 

and after patient treatment. It provides information on the basal gut microbiota (dysbiotic) profile and its 

progression after treatment. Together with the existing scientific knowledge, it leads to the identification of 

the most relevant phylotypes, which are interpreted in terms of microbial ecology.  

 

 
1 BIPEDS classification: B: Burden of disease; I: Investigational; P: prognostic; E: Efficacy of Intervention; D: 
Diagnostic and S: Safety 
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 IMU 
In the OACTIVE framework, novel sensing systems developed the possibility as well to adapt available 

existing sensors for the intended tasks investigated. Modular approaches followed in order to guarantee a 

flexible configuration of the wearable platform according to the operating scenarios. A set of IMU sensors, 

worn by the means of accessories developed ad hoc, applied to the main limbs in order to gather further 

information on motion.  

In the modelling framework, a novel sensing system developed as well as the possibility to adapt available 

existing sensors for the intended tasks investigated. A modular approach followed in order to guarantee a 

flexible configuration of the wearable platform according to the operating scenario (indoors, outdoors, AR 

gaming) assuring the adequate scalability to the wireless body area network (WBAN). An electronic board 

developed to acquire and transmit signals via Bluetooth and/or store them on board in a micro-SD card. 

The electronic board runs signal processing algorithms, elaborate the acquired signals to extract several 

features. A 9 DOF IMU embedded in the board allows collecting information on posture and/or activity 

of the patient. A set of external IMU sensors, worn by the means of accessories developed ad hoc, applied 

to the lower limbs in order to gather further information on motion. A careful investigation conducted on 

state of the art to choose the solution that can fit best project requirements. Then  prototypes produced to 

allow users to be monitored for up to 8 running hours in a comfortable way, indoor and outdoor, during 

standard daily activities. The patience movements collected from AWS cloud database and we take as 

outputs the patient’s posture and activity information. At least 500 time series, data points have been used.   

 

 Augmented Reality (AR) 
OACTIVE relies on the AR gaming technology offering both clinical assessment and rehabilitation options, 

usually not available with traditional rehabilitation methods. It aims at exploiting haptic and vision 

technologies to provide patients with assistive visual and contact feedback while performing 

games/rehabilitation as well as medical staff with biomechanical indicators for assessment and diagnosis 

support. It goes beyond the existing AR rehabilitation programs by: (i) expanding & improving the currently 

limited opportunities for rehabilitation scenarios, (ii) enhancing primitive spatial and temporal training 

scenarios, (iii) addressing staff and facility limitations as well as human factors, (iv) creating user friendly 

interfaces and integrating interactive environment, (v) accurately implementing crucial stimuli (force 

sensing, visual information) together to have a real impact on the game task completion performance.  
The purpose of AR gaming is to simplify the development of OACTIVE type games and hosting patients 

into a single interface in order to gather data that can interact between the patient and the medical examiner. 

The game framework hosts all the games that are developed, for all the three different platforms, by using 

the decided hardware architecture in combination with the selected graphic engine. Finally, this framework 

fulfils two objectives: (i) simplification of the game development and (ii) host the games in a unified 

interface where the users are signing in, interacting, playing, logging sessions and finally exporting clinical 

pictures of the patient. A graphics general menu created as it facilitates the in-game menu creation to sign 

in and select a game. A communication system, depending on the capabilities and protocols of the tracking 

devices, makes the tracking data available in real-time. Filtering and synchronization into a common 

reference frame needed, especially in case of more than one sensor. This module, depending on the graphics 

engine, provides the appropriate data format. Multiple device render modules open the use to many 

different rendering devices, even if OACTIVE is intended to use AR devices. Because the user’s 

performance has to be checked from therapists through more complete data, than the user’s score data that 

is recorded through the games, the log system module records this data in real-time and it is uploaded to 

the user’s database for each session. Finally, a server that contains a database, allows final users and 

professionals to access their profiles and update them with new exercises, log their gaming sessions, and 

leave messages as also the connection between the game system and user's profile to update the 

corresponding tracking data as an output. 
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AR glasses are responsible for the presentation of the OACTIVE games to the patient.  AR glasses is a 

hardware device that is used for monitoring the Augmented Reality environment to the patient during the 

implementation of the personalized treatment plan. They inform the patient about the progress of the 

disease through exercises that take place in the AR games environment. 

 

 Exogenous/environmental risk factors  
Social scientists create models to describe how individuals’ function, either on their own or in complex 

social settings. Behaviour models identify discrete drives that researchers use these to describe and try to 

explain human behaviour. Mechanistic models can also attempt to explain human behaviour in terms of 

biochemical events in the brain and body. OA is not easy to define, predict or treat. Despite extensive 

research costing many billions of Euros, no drugs have been proven to modify the biological progression 

of OA, and only a few treatments are proven to relieve symptoms beyond the placebo effect. Given this 

failure to find an effective post-diagnosis treatment, attention should turn to preventing or delaying the 

onset of cartilage degeneration. Identification of the risk factors for developing arthritis has been limited 

by a lack of longitudinal data, as well as an absence of reproducible, non-invasive methods to measure 

changes in joint morphology and function. As a result, the disease processes governing osteoarthritis 

progression are still poorly understood. Although most of the existing research has focused on factors 

associated with the disease, the lack of longitudinal data examining the factors associated with disease onset 

and progression has resulted in a lack of prevention and treatment interventions that aim to target the most 

appropriate modifiable risk factors and, therefore, prevent or delay the onset and/or progression of the 

disease.  

 Medical  
Medical risk factors known to influence development of the disease include advanced age, gender, hormonal 

status, body weight or size, usually quantified using body mass index (BMI), and a family history of disease. 

Additionally, there is now evidence supporting a strong genetic association. Other known risk factors for 

the onset and progression of OA include joint loading during occupational or physical activity and sports 

participation, muscle weakness, a past history of knee injury and joint operations (ACL injury and 

reconstruction, meniscal damage and partial meniscus removal) and depression. Although many of the 

above factors are fixed, other risk factors such as body weight, physical activity and occupation are 

modifiable. For many people occupational activities involving physically demanding jobs, such as manual 

handling of heavy loads or prolonged kneeling are associated with the disease. 

 

 Socioeconomic 
Social context may interact with pathophysiological processes and individual-level variables to influence 

health outcomes in those living with OA. Evidence exists linking lower levels of individual socioeconomic 

status, life course approach and poorer health outcomes in OA. Recent data suggest that the social or 

socioeconomic environment of an individual may be relevant to arthritis prevalence and health outcomes 

as well. There are several dimensions to measure social position and social context that relate to population 

with OA (Figure 3.4). Compositional attributes of socioeconomic status are measured at the individual level 

and have commonly included variables such as occupation type (professional/managerial etc.), level of 

educational attainment, income (both individual and household), home ownership, and social class. The 

socioeconomic context of communities may affect characteristics of the environment of communities to 

which all residents are exposed, regardless of their social position. The complex nature of social context 

can be described in terms of both physical and social components, as well as their objective (i.e., actual) or 

subjective (i.e., perceived qualities) and their scale or immediacy to individuals and groups. The life course 

approach is particularly relevant in understanding the long-term effects of both social position and social 

context on chronic diseases. Life course measures encompass the aforementioned factors while explicitly 
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including the variable of time, which allows researchers to study disease outcomes across generations and 

at the individual level beginning from gestation and through childhood, adolescence, young adulthood, 

middle-age and senescence. Several proposed theoretical models that explain the influence of life course on 

disease risk may include critical or sensitive periods, which state that exposures during a specific window 

of time may have long-lasting effects that increase disease risk. 

 

 

Figure 3.4: Socioeconomic risk factors considered in OACTIVE. 

 

The life course approach is particularly relevant in understanding the long-term effects of both social 

position and social context on chronic diseases. Life course measures encompass the aforementioned 

factors while explicitly including the variable of time, which will allow us to study disease outcomes across 

generations and at the individual level beginning from gestation and through childhood, adolescence, young 

adulthood, middle-age and senescence. Our models intend to explain the influence of life course on OA 

risk may include critical or sensitive periods, which state that exposures during a specific window of time 

may have long-lasting effects that increase disease risk. The aim of this project is to analyse and validate 

socioeconomic status of patients with OA (Figure 3.4). More specifically in this task, data from references 

collected focused on social position, explored and exogenous factors related to the individual such as 

education, income, occupation, physical activity and behaviour analysis. There are several dimensions to 

measuring social position, social context personal factors that relate to populations with OA. 

 

 Social Position 
Compositional attributes of socioeconomic status measured at the individual level including variables such 

as occupation type (professional/managerial etc.), level of educational (lower levels of educational 

attainment have frequently been associated with the increased prevalence, morbidity and mortality of many 

chronic diseases), attainment, income (both individual and household), home ownership, and social class. 

Other social position factors that are investigated are the childhood socioeconomic status: parental 

education; occupation; income; home ownership etc. The current socioeconomic status also examines for 

example the education status; income; home ownership and social capital. 

 

 Social Context 
The socioeconomic context of communities may affect characteristics of the environment of communities 

to which all residents are exposed, regardless of their social position. The following social context risk 

factors collected and analysed in this context for OA: (i) Community socioeconomic status: this index is an 
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area-based measure that represents the average level of disadvantage across a geographical area (e.g., 

household poverty; racial residential segregation etc.) and is a composite of the income, educational 

attainment, levels of public sector housing, unemployment and jobs in relatively less skilled occupations. 

(ii)Build environment: of the neighbourhood environment examined like community mobility barriers (i.e., 

uneven sidewalks or other walking areas; parks and walking areas that are easy to get to and easy to use; 

safe parks or walking areas; places to sit and rest at bus stops, in parks, or in other places where people 

walk; curbs with curb cuts) and transportation facilitators (i.e., public transportation close to home; public 

transportation with adaptations for people who are limited in their daily activities; and adequate handicap 

parking, able to drive, have a car available to you at your home). (iii) Environmental exposures: physical 

environmental factors contributing to health outcomes. 

Our model also includes commonly related personal risk factors associated with OA, including: (i) personal 

factors: smoking, age, gender, occupation-tasks, BMI (i.e., obesity), injury, family history, race and physical 

activity. Many of these personal risk factors are also associated with one’s current social position. In addition 

(ii) Community perceptions, also included with mediator and moderators, such as community perceptions 

and (iii) several dimensions of psychological influences (i.e., perceived helplessness, social support/coping 

resources, psychological disposition, perceived discrimination and/or catastrophizing), that have been 

demonstrated to be associated with health outcomes. These factors provide a more transparent relationship 

to link social determinants to arthritic health outcomes but also, allow us to identify areas for OA 

behavioural interventions. 
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3.2 Core Layer 

This section presents the OACTIVE semantic model with foundations constituted on which the 

OACTIVE Ontology is built. The OACTIVE semantic model consists of four specific ontologies, namely, 

i) Finite Element Model, ii) Musculoskeletal Model, iii) In vitro model of osteochondral tissue and iv) 

Patient Specific Model Creation. The first three are combined for the creation of the Personalized 

intervention through AR. Also, nine upper ontologies namely, MRI; X-Ray Imaging; Demographics; 

Physical Examination; Social Participation; Socioeconomics; Scales; Anamnesis and Biomarkers (Blood / 

Urine Tests) are combined for the Patient Specific Model Creation.   

In order to design the taxonomies of describing OACTIVE project, the agile software development called 

ODMedit (ODM) has been applied to (i) define the application domain boundaries and (ii) capture elements 

definition. ODMedit tool is a semi-automatic approach where data integration is simplified if the same code 

is applied for all data items with the same, or at least very similar, meaning. By composing a top-level 

overview, abstract concepts facilitate system architecture planning and optimization.  

ODMedit is intended to foster uniform semantic annotation. A random set of data elements from an 

established data standard was selected to test this feature. For each of those data elements available UMLS 

codes were identified with the UMLS Metathesaurus Browse. Suitable codes were identified from the 

output of the UMLS Metathesaurus Browser by manual review. Available annotations in the MDM portal 

were analysed for each data element regarding uniform semantic annotation and compared to UMLS codes. 

In particular, data harmonization between populations to align data from the various OA groups before 

applying patient recruitment algorithms, where transformation of the data, from multiple sources, involved 

in this process. Because there are Inherent Structural Differences (ISD) in the datasets due to the variability 

in data collections protocols, the identified ISD's categorised into semantics, syntactics, and transformation 

differences. 

Semantics category concerns those similar data elements that could be assigned to higher level common 

data elements, e.g., "Pain that exists in the bending of the knee" and "pain that exists in "knee extension" 

were mapped to "knee pain". 

While syntactics is about mapping where there are differences in coding practices between datasets (e.g. {1 

= positive, 2 = negative} vs {1 = no, 2 = yes}. To cope with the manipulations of representation schemes, 

where functions employed to map from one type to another (e.g. ‘bodily pain score’ = round (mean((6 - 
SF7) * 20, (5 - SF8) * 25)), where SF7 = ‘bodily pain in the past 4 weeks’ with values ranging from 1 = ‘no 

pain’ to 6 = ‘very severe’ and SF8 = ‘pain interference in your work in the past 4 weeks’ with values ranging 

from 1 = ‘not at all’ to 5=‘extremely’). 

Finally, all the above processes executed as an automated software harmonisation pipeline where data – 

pre-processing, semantic processing (identification of common data concepts and creation of mapping 

between concepts), as also syntactic processing (transformation and mapping) and quality control methods 

(value ranges, consistencies, distributions) combined. 
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 OACTIVE Upper Ontology Framework (UOF) 
Data generated includes quantitative data about the patient’s anatomy and physiology, patient’s health 

phenomenological data, movement data (being collected by clinical centres, biomechanics laboratories, 

wearable sensors and smartphone accelerometers), clinical data (questionnaire data for entire cohort, 

physical activities, exam data, bio specimen assay data and bone ancillary study data of cohort), bio-

specimens (serum, plasma, and urine and DNA for entire cohort), images (replacement images, X-ray and 

MRI images for entire cohort), image assessments, biomarkers (serum and urine biochemical biomarkers 

data, mass spectrometry data of pooled serum and urine samples of subjects with and without knee OA, 

etc.), data on population statistical variability and healthcare value chain data. OACTIVE semantic 

framework will be in the form of an ontology network where each scenario specific ontology will be 

connected to an upper ontology through generalization. The upper ontologies are described through UML 

graphs below.  

The graph representation of the OACTIVE upper ontology is presented in Figure 3.5. In this figure there 

is a description of the 1st-3rd Levels of Information Extraction, higher functions. 

 

 

Figure 3.5: OACTIVE Ontology Framework classes visualization 

 

The graph representation of the Demographics ontology is presented in Figure 3.6. In this figure feature 

extraction of Demographics data variables is represented. The variables used for feature extraction in 

Demographics data namely are: ID code, Data provider, Date, Sex, Age (years), Birth country, Ethnicity, Occupation. 
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Figure 3.6: Demographics upper ontology 

 

The graph representation of the Socioeconomics ontology is presented in Figure 3.7. The socioeconomic context 

of communities may affect characteristics of the environment of communities to which all residents are 

exposed, regardless of their social position. The following social context variable collected and analysed in 

this context for OA. Namely these variables are Name, Marital status, Level of education of the patient and his/her 
parent, Residency, Household income and Housing status.  

The graph representation of the Social Participation ontology is presented in Figure 3.8. The Social 

Participation ontology consists of eight “question” variables which aim to develop the patient's social 

activity. Namely, the variables of Social Participation ontology are:  

● Name  
● Have you taken part in a club, interest group or activity group, church or other similar activity? 
● Have you been to a cultural or educational event such as the cinema, theatre, museum, talk or course?  
● Have you eaten out?  
● Have you been out to a pub, café or tearoom? 
● Have you been to a public event?  
● Have you taken part in an organised games afternoon or evening? For instance, bingo, quiz or card games 
● Have you been on a day trip organised by a club or society? 
● Have you carried out committee work for a club, society or other group? 
● Have you done any organised voluntary work? 
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Figure 3.7: Socioeconomics upper ontology 

 

 

Figure 3.8: Social Participation upper ontology 

 

As part of the patient’s Medical history data Anamnesis data (Figure 3.9), as also Physical examination data 

(Figure 3.9), are used for features extraction. Many initial encounters with patients will include asking the 

patient's medical history, while subsequent visits may only require a review of the medical history and 

possibly an update with any changes. Obtaining a medical history can reveal the relevant chronic illnesses 

and other prior disease states for which the patient may not be under treatment but may have had lasting 

effects on the patient's health. The medical history may also direct differential diagnoses. Medical history 

data includes an inquiry into the patient's medical history, past surgical history, family medical history, social 

history, allergies, and medications the patient is taking or may have recently stopped taking. Anamnesis data 

consists of variables, namely: ID code, Sex, Group, Data Provider, Any current medication, Birth country, Personal 
history of OA, Occupation, High blood pressure, Type of sport, Sports frequency, Family OA history, Meniscal damage, Do 
you have knee OA?, Knee instability, Have you ever been told that you have OA of your knee by a doctor?, Regular sport 
leisure activity, Occupational risk, Smoking, Number of cigarettes per day,  Alcohol, Hormonal status (women), Knee extensor 
muscle weakness, Hip OA/Surgery, Resting VAS, Walking VAS, Previous knee injuries, Neuropathic component, Knee 
pain, Pain side, Pain Rhythm, Time since pain start, Ethnicity, Knee pain [NHANES-type questions].  
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Figure 3.9: Anamnesis upper ontology 

 

The graph representation of the Physical examination ontology is presented in Figure 3.10. Physical examination 

is the process of evaluating objective anatomic findings through the use of observation, palpation, 

percussion, and auscultation. The information obtained must be thoughtfully integrated with the patient's 

history and pathophysiology. Moreover, it is a unique situation in which both patient and physician 

understand that the interaction is intended to be diagnostic and therapeutic. The physical examination, 

thoughtfully performed, should yield 20% of the data necessary for patient diagnosis and management.  

The physical examination is a key part of a continuum that extends from the history of the present illness to 

the therapeutic outcome. If the history and physical examination are linked properly by the physician's 

reasoning capabilities, laboratory tests should in large measure be confirmatory. The physical examination, 

however, can be the weak link in this chain if it is performed in a perfunctory and superficial manner. 

Understanding the pathophysiologic mechanism of a physical abnormality is essential for correct diagnosis 

and management.  

The variables extracted from the Physical examination are: ID code, Mass (Kg), Height (m), BMI , Joint line tenderness 
[Left ], Joint line tenderness [Right], Patellofemoral pain [Left], Patellofemoral pain [Right], Crepitus [Left ], Crepitus 
[Right], Right Flexion angle, Right Extension angle, Flexion deformity  [RIGHT], Left Flexion angle, Left Extension 
angle, Flexion deformity [LEFT], Muscle atrophy     LEFT-Specify the measurement of LEFT limb (cm), RIGHT-Specify 
the measurement of RIGHT limb (cm), Knee laxity [Left], Knee laxity [Right], Joint proprioception [Left], Joint 
proprioception [Right] Abdominal perimeter (cm), LEFT EXTENSION Dynamometric/HHD evaluation of knee 
strength, RIGHT EXTENSION Dynamometric/HHD evaluation of knee strength, LEFT FLEXION 
Dynamometric/HHD evaluation of knee strength, RIGHT FLEXION Dynamometric/HHD evaluation of knee 
strength, 5 Sit to stand test (sec), Walking Speed: 10 meter walk test (s), Knee_Morphology, Joint_Effusion, 
Increased_Local_Temperature, Local_Redness, Bakers_Cyst, Muscle strength (MRC) - LEFT [Hip flexors], Muscle 
strength (MRC) - LEFT [Hip abductors], Muscle strength (MRC) - LEFT [Knee extensors], Muscle strength (MRC) - 
LEFT [Knee flexors], Muscle strength (MRC) - LEFT [Plantar flexors], Muscle strength (MRC) - RIGHT [Hip flexors], 
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Muscle strength (MRC) - RIGHT [Hip abductors], Muscle strength (MRC) - RIGHT [Knee extensors], Muscle strength 
(MRC) - RIGHT [Knee flexors], Muscle strength (MRC) - RIGHT [Plantar flexors], Leg length discrepancy. 

 

 

Figure 3.10: Physical examination upper ontology 

 

The graph representation of the Blood Tests and Urine Tests ontology is presented in Figure 3.11 and Figure 

3.12 respectively.  

Already known biomarkers under clinical validation processes, will be included. These biomarkers will be 

followed by means of ELISA, mostly commercially available. Also, studies were carried out for a new source 

of biomarkers on samples coming from patients being under treatment, so the progression of patients can 

be monitored. From fluid samples (blood, urine and synovial) exosomes isolated and characterised by 

miRNA content. Exosomes purified from samples by means of ultracentrifugation. microRNA is isolated. 

The variables extracted from the Blood Tests are namely Name, Uric acid (mg/dL), Total cholesterol (mg/dL), 
HDL-cholesterol (mg/dL), LDL-cholesterol (mg/dL), Triglycerides (mg/dL), Protein C reactive (mg/L), Vitamine D 
(mg/L), PTH (pg/mL), Glycated haemoglobin (%), Serum COMP (ng/mL), Serum HA (ng/mL), PIICP (pg/mL), 
IL-1β (pg/mL), TNF-α (pg/mL), IL-6 (pg/mL) and Vitamine K. 

The variables extracted from the Urine Tests are namely Name, Urine COMP (ng/ml), Urine HA (ng/mL), Urine 
PIICP (pg/mL), Urine IL-1β (pg/mL), Urine TNF-α (pg/mL) and Urine IL-6 (pg/mL). 
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Figure 3.11: Blood Tests upper ontology 

 

 

Figure 3.12: Urine Tests upper ontology 

 

The graph representation of the Scales ontology is presented in Figure 3.13. In this figure feature extraction 

of Scales data variables is represented. In this upper ontology the results generated from state-of-the-art 

scales of questionnaires are contained. The scales used in the OACTIVE project are FACHS, WOMAC, 

KOOS, HADS and GADS. For each of the scales the necessary data are saved in this upper ontology. 
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Functional Ambulation Classification of the Hospital at Sagunto (FACHS)2,3 is a validated scale to assess 

gait and categorizing patients into different walking abilities, with a simple and quick management (See 

Table 3.1). 

 

Table 3.1 Functional Ambulation Classification of the Hospital at Sagunto (FACHS)2,3 

Level 0 Non-ambulation. 

Level 1 Non-functional or dependent ambulation. 

Level 2 Household ambulation. 

Level 3 Surroundings of the house ambulation (neighborhood). 

Level 4 Community ambulation. 

Level 5 Normal ambulation. 

 

Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) is a questionnaire used to 

assess the health status of osteoarthritis patients introduced in 1988. It is consisted of 33 items which 

evaluates the health and function of the patient from various aspects including: clinical symptoms (5 

questions), severity of joint stiffness (2 questions), degree of pain (9 questions), and activity of daily living 

(17 questions). Osteoarthritis of the knee is the most common chronic joint disease that involves middle 

aged and elderly persons. There are different clinical instruments to quantify the health status of patients 

with knee osteoarthritis and one example is the WOMAC score that has been translated and adapted into 

different languages. Reliability testing resulted in a Cronbach’s alpha of 0.917, showing the internal 

consistency of the questionnaire to be a reliable tool. Different validation studies of WOMAC make this 

clinical instrument usable for knee OA evaluation before and at follow-up of treatment protocols including 

nonoperative and operative. These validation studies for WOMAC index also enable clinical investigators 

to assess those clinical outcome reports using this index for knee OA management from different parts of 

the world collectively. The WOMAC score is saved under one variable in the upper ontology. 

The Knee injury and Osteoarthritis Outcome Score (KOOS) was developed as an extension of the 

WOMAC Osteoarthritis Index with the purpose of evaluating short-term and long-term symptoms and 

function in subjects with knee injury and osteoarthritis. The KOOS holds five separately scored subscales: 

Pain, other Symptoms, Function in daily living (ADL), Function in Sport and Recreation (Sport/Rec), and 

knee-related Quality of Life (QOL). The KOOS has been validated for several orthopaedic interventions 

such as anterior cruciate ligament reconstruction, meniscectomy and total knee replacement. In addition, 

the instrument has been used to evaluate physical therapy, nutritional supplementation and glucosamine 

supplementation. The effect size is generally largest for the subscale QOL followed by the subscale Pain. 

The KOOS is a valid, reliable and responsive self-administered instrument that can be used for short-term 

and long-term follow-up of several types of knee injury including osteoarthritis. The measure is relatively 

new and further use of the instrument will add knowledge and suggest areas that need to be further explored 

and improved. 

 The main reason for developing a single instrument with the purpose of covering several types of knee 

injury and including osteoarthritis (OA), was that traumatic knee injuries often causes concomitant damage 

to multiple structures (ligaments, menisci, cartilage, etc.) and frequently lead to the later development of 

OA. To be able to follow patients after a trauma and to gain insight into the change of symptoms, function 

etc. over time, a questionnaire which covers both the short-term and long-term consequences is needed. 

 
2 Viosca E., et al. Proposal and Validation of a New Functional Ambulation Classification Scale for Clinical Use. Arch 
Phys Med Rehabil 2005;86:1234-1238. 
3 Viosca E., et al. Walking Recovery After an Acute Stroke: Assessment With a New Functional Classification and the 
Barthel Index. Arch Phys Med Rehabil 2005;86:1239-1244. 
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Prior instruments such as the Lysholm knee scoring scale have focused only on the short-term 

consequences and instruments such as the WOMAC Osteoarthritis Index only on the long-term 

consequences. An instrument intended for follow-up of these patients needs to adequately monitor both 

the acute injury consequences in the physically active and younger patients, and the chronic outcome in the 

older. The KOOS index data is saved in the upper ontology using five different variables for the five 

different metrics KOOS index evaluates. Namely, KOOS PAIN (%), KOOS SYMPTOMS (%), KOOS 

ADL (%), KOOS QOL (%) and KOOS SPORT/REC (%) are the variables of the KOOS index. 

There is a need to assess the contribution of mood disorder, especially anxiety and depression, in order to 

understand the experience of suffering in the setting of medical practice. Most physicians are aware of this 

aspect of the illness of their patients, but many feel incompetent to provide the patient with reliable 

information. The Hospital Anxiety and Depression Scale, or HADS, was designed to provide a simple yet 

reliable tool for use in medical practice. The term 'hospital' in its title suggests that it is only valid in such a 

setting, but many studies conducted throughout the world have confirmed that it is valid when used in 

community settings and primary care medical practice. The HADS data can be saved under one variable in 

the Scales upper ontology. 

The GAD-7 is commonly used as a measure of general anxiety symptoms across various settings and 

populations. However, there has been disagreement regarding the factor structure of the GAD-7, and there 

is a need for larger studies investigating the psychometric properties of the measure. Patients undergoing 

treatment, both inpatient and outpatient patients, completed the GAD-7 at pre- and post-treatment. 

Measures of depression, well-being, and other anxiety measures were also completed, making it possible to 

investigate convergent and divergent validity. Internal consistency and convergent validity were excellent 

for the total sample, and there was acceptable variation related to treatment groups. The GAD-7 has 

excellent internal consistency, and the one-factor structure in a heterogeneous clinical population was 

supported. The needed data from the GADS scale is saved under one variable. 

 

 

Figure 3.13: Scales upper ontology 

 

The graph representation of the RX ontology is presented in Figure 3.14. RX ontology is a repository for 

X-Ray Kinematics to pose estimation. The kinematics model is used to calibrate joint positions and 

orientations in the body segments of a skeletal model. For the OACTIVE the necessary data extracted from 

an X-Ray, for the RX upper ontology, are Name, Leg-length inequality, Leg-length inequality measure (mm), Right 
Knee alignment, Right radiographic angle (Knee alignment), Left Knee alignment, Left radiographic angle (Knee alignment), 
Right Kallgren and Lawrence, Left Kallgren and Lawrence,    RIGHT patellofemoral lateral angle, LEFT patellofemoral 
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lateral angle, RIGHT Lateral deviation patella (mm), LEFT Lateral deviation patella (mm), RIGHT Congruence angle 
and LEFT Congruence angle. 

 

 

Figure 3.14: RX upper ontology 

 

MRI upper ontology (Figure 3.15) consists of necessary data for the extraction of information needed for 

the patient’s specific geometry, for each knee. In particular, image segmentation establishes the three-

dimensional reconstruction of the tibiofemoral and patellofemoral joint components; predominantly the 

femur, tibia, and patella; femoral, tibial, and patellar cartilage; medial and lateral collateral ligaments, anterior 

and posterior cruciate ligaments, and patellar ligament; menisci; and other passive components of the 

capsule that may be deemed necessary for the investigation of tibiofemoral and patellofemoral joint 

mechanics. Each tissue assigns appropriate density to allow accurate nonlinear dynamics simulations. The 

bones assumed to be rigid based on their relatively high stiffness when compared to other soft tissue 

structures. Constitutive relationships representative of typical nonlinear stress-strain behaviour of the other 

underlying tissue structures relies on well-established literature available for ligaments, cartilage, and 

meniscus. Ligament representation incorporates in situ ligament strains. Ligament-to-bone wrapping, 

ligament-to-ligament wrapping, and contact interactions in between cartilage and in between cartilage and 

menisci are defined. Contact between components modelled as frictionless based on the low friction in 

synovial joints. Loading and boundary condition specifications allow prescription of the tibiofemoral and 

patellofemoral loads (forces and moments) or kinematics (rotations and translations) or a combination of 

those. In return, the model outputs unspecified kinetic variables or degrees of freedom. Complete stress-

strain state for the tissues also is calculated as part of the solution process. 

The MRI upper ontology is evaluated through the MOAKS score, which consists of seven upper classes 

which are: Bone marrow lesions (BMLs) and cyst, Articular cartilage, Osteophytes: score, Ligaments and tendons: score, 
Meniscal morphology, Meniscal extrusion: score, Hoffa's fat synovitis, Synovitis /effusion and Periarticular features. Each 

upper class consists of variables with the exception of Meniscal morphology which contains two sub-classes 

namely, Medial and Lateral. The variables for each upper class and the two subclasses are presented below. 

● Name  
● Bone marrow lesions (BMLs) and cyst   

○ Trochlea medial containing the values for BML size, BML number and BML%V.Cyst 

○ Trochlea lateral containing the values for BML size, BML number and BML%V.Cyst 
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○ Femur central medial containing the values for BML size, BML number and BML%V.Cyst 

○ Femur central lateral containing the values for BML size, BML number and BML%V.Cyst 

○ Femur posterior medial containing the values for BML size, BML number and BML%V.Cyst 

○ Femur posterior lateral containing the values for BML size, BML number and BML%V.Cyst 

○ Patella lateral containing the values for BML size, BML number and BML%V.Cyst 

○ Patella medial containing the values for BML size, BML number and BML%V.Cyst 

○ Tibia anterior medial containing the values for BML size, BML number and BML%V.Cyst 

○ Tibia anterior lateral containing the values for BML size, BML number and BML%V.Cyst 

○ Tibia central medial containing the values for BML size, BML number and BML%V.Cyst 

○ Tibia central lateral containing the values for BML size, BML number and BML%V.Cyst 

○ Tibia posterior medial containing the values for BML size, BML number and BML%V.Cyst 

○ Tibia posterior lateral containing the values for BML size, BML number and BML%V.Cyst 

○ Tibia subspinous subregion containing the values for BML size, BML number and 

BML%V.Cyst 

○ Other subregions 

● Articular cartilage  
○ Femur: central medial: Cartilage loss % (full + partial) 

○ Femur: central medial: Cartilage loss % (full) 

○ Femur: posterior medial: Cartilage loss % (full + partial) 

○ Femur: posterior medial: Cartilage loss % (full) 

○ Femur: posterior lateral: Cartilage loss % (full + partial) 

○ Femur: posterior lateral: Cartilage loss % (full) 

○ Femur: central lateral: Cartilage loss % (full + partial) 

○ Femur: central lateral: Cartilage loss % (full) 

○ Tibia: central lateral: Cartilage loss % (full + partial) 

○ Tibia: central medial: Cartilage loss % (full + partial) 

○ Tibia: central lateral: Cartilage loss % (full) 

○ Tibia: central medial: Cartilage loss % (full) 

○ Trochlea medial: Cartilage loss % (full + partial) 

○ Trochlea medial: Cartilage loss % (full) 

○ Trochlea lateral: Cartilage loss % (full + partial) 

○ Trochlea lateral: Cartilage loss % (full) 

○ Patella lateral: Cartilage loss % (full + partial) 

○ Patella lateral: Cartilage loss % (full) 

○ Patella medial: Cartilage loss % (full + partial) 

○ Patella medial: Cartilage loss % (full) 

○ Other areas 

● Osteophytes: score  
○ Superior patella 

○ Inferior patella 

○ Lateral patella 

○ Medial patella 

○ Medial trochlea 

○ Lateral trochlea 

○ Central medial femur 

○ Central lateral femur 

○ Posterior lateral femur 

○ Posterior medial femur 
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○ Lateral tibia 

○ Medial tibia 

○ Subspinous tibia 

○ Other subregions 

● Meniscal extrusion: score 
○ Medial meniscus: medial extrusion 

○ Medial meniscus: anterior extrusion 

○ Lateral meniscus 

● Meniscal morphology: Lateral 
○ Anterior: Signal 

○ Anterior Horn 

○ Anterior: Meniscal cyst 

○ Anterior: Other menisci morphology 

○ Body: Signal 

○ Body 

○ Body: Meniscal cyst 

○ Meniscal hypertrophy 

○ Body: Other menisci morphology 

○ Posterior 

● Meniscal morphology: Medial 
○ Body: Signal 

○ Body: Tear 

○ Body: Partial maceration 

○ Body: Meniscal cyst 

○ Body: Meniscal hypertrophy 

○ Posterior horn: Signal 

○ Posterior horn: Vertical tear 

○ Posterior: Horizontal tear 

○ Posterior: Radial tear 

○ Posterior horn: Root tear 

○ Posterior horn: Meniscal cyst 

○ Posterior horn: Meniscal hypertrophy 

○ Other meniscal morphology 

○ Anterior horn 

● Ligaments and tendons: score  
○ ACL and PCL: score  

○ BML/cyst 

○ Repair 

○ Patellar tendon 

○ Infrapatellar bursa signal 

○ Popliteal cyst 

○ Other periarticular features 

● Periarticular features 
● Hoffa's fat synovitis 
● Synovitis / effusion 
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Figure 3.15: MRI upper ontology Levels of information extraction
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Personalized gait retraining intervention requires an estimation of the internal state of the musculoskeletal 
system. Current approaches rely mostly on kinematic measurements to evaluate the performance of a 
subject. However, a pure kinematic analysis is not enough to quantify the stress of the knee during 
movement, because one must also account for the forces that act on the system. In terms of dynamics, 
most studies are limited only to inverse dynamics analysis due to the increased computational burden 
required for calculating the muscle forces and joint reaction loads in real-time. The system developed in the 
OACTIVE project moves one step further by estimating the muscle forces and joint reaction loads in real-
time. This section presents the architecture and implementation details of the underlying system. The term 
“internal state of the musculoskeletal system” refers to the quantities that cannot be measured non-
invasively, which however can be determined from other experimental measurements, and are important 
for quantifying the performance of the subject. Examples include (i) the kinematics of the skeletal system 
(e.g., anatomical joint angles), (ii) joint loads, (iii) muscle forces, and (iv) joint reaction loads. This 
information can be used to determine whether a subject is walking in an optimal manner by examining 
his/her reaction loads at the diseased knee and provide real-time feedback that can aim in reducing the 
contact pressures.  

Figure 3.16 presents a diagram of the different stages that are being solved in real-time in order to calculate 
the internal state of the musculoskeletal system in real-time from kinematic and dynamic measurements. 
The experimental measured positions (markers or orientations) are fed to the Inverse Kinematics (IK) 
module, which determines the generalized model coordinates that best match the experimentally recorded 
motion. The kinematic analysis is very important for the next stages. Following Inverse Dynamics (ID) is 
performed to calculate the generalized forces that satisfy the Equations of Motion (EoMs), provided any 
externally applied force. Static Optimization (SO) can be employed to estimate the required muscle 
activation and forces that satisfy both the motion and the physiological muscle constraints. This step can 
be further improved by using information from the EMG recordings if available. The muscle forces are 
essential for the calculation of the joint reaction loads that is the final stage of the system.  

 

 

Figure 3.16: Architecture diagram of the different stages that are solved in order to determine the internal state of the musculoskeletal system in real-

time. 

 

In order to perform any kind of IK analysis one must obtain the motion of the body segments from the 
recorded kinematics. The motion can be obtained either by recording the position of the attached markers 
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or by measuring the 6D motion of IMUs. The next step would be to determine the evolution of the 
generalized model coordinates that best match the experimentally recorded motion. The IK method goes 
through each time step of the recorded motion and computes the generalized coordinates which positions 
the model in a pose that best matches the experimental measurements. More formally, this is expressed as 
a weighted least squares problem, whose solution aims to minimize the following error. 
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where "! represents the weight for measure +, %!
"#$ the experimental measure and %!(() the model measure 

that depends on the pose. Each measure has a weight associated with it, specifying the influence of the 
particular term on the overall error. The least squares problem can be solved using a general quadratic 
programming solver. In terms of performance, our implementation is able to solve the IK for a model with 

23 Degrees of Freedom (DoFs) in less than 0.5ms without compromising the accuracy of the solution (<
2./ Root Mean Square Error (RMSE)).  

The next stage (Figure 3.16 second level) is to provide a solution to the ID problem. In order to solve for 
the generalized forces that satisfy the Equations of Motion (EoMs) one must first calculate the first and 
second derivative of the kinematics. Numerical differentiation is a challenging problem, especially when we 
deal with real-time application, where one does not know the value of the kinematics in future time 
instances (casual systems). The kinematics obtained from IK are noisy, resulting in bad approximations of 
higher order derivatives. Therefore, appropriate filtering must be implemented in order to reduce the noise 
artefacts without introducing lags and errors in the filtered signals. However, even if one filters the signal 
there will be always jitter in the higher order derivatives. To this end, we adopted the following strategy 
making use of the high sampling rates of the kinematics measurements in order to implement higher order 
IIR filters without introducing lags in the calculated quantities:  

1. IK is solved in a separate thread (T1) configuring the motion capture system to operate with high 
sample frequencies and the solution of IK is stored in a thread safe buffer.  

2. In a separate thread (T2) we solve the rest of the stages (ID, SO, and JRA).  
3. Each time we proceed into T2 we read the buffer containing the solutions obtain by IK.  

4. A low pass Butterworth filter of order > 50 is applying on the most recent kinematics data.  
5. Then smooth splines are fitted in order to compute higher order derivatives.  
6. Finally, we choose the sample delay in order to evaluate the kinematics and their derivatives. Low 

delay (2-3 samples) will result in low latency (lag) in the estimated quantities. Higher delay 
(noncausal filter) results in larger latencies but permits better approximation of the higher order 
derivatives as compared to offline analyses.  

Figure 3.17 depicts the results obtained by applying the aforementioned procedure to filter the kinematics 
and obtain higher order derivatives. For a comparison, a conventional 4th order Butterworth filter is applied 
to the signal (right column). The latter is the filtering adopted in the literature, which as evident can lead to 
bad approximations of the higher order derivatives. The increased complexity of the proposed filter satisfies 
the requirement for accuracy that can propagate to errors in the estimated quantities of the next stages. 
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For the given kinematics describing the movement of a model and any externally applied force, the ID 
method determines the generalized forces (e.g., net forces and torques) at each joint that satisfy the 

movement. More formally (see equation bellow), are solved for the unknown	3 provided (, (̇ and	(̈. Since 

( is calculated from IK, (̇ and (̈ must be obtained using numerical differentiation. Discontinuities in the 
generalized coordinates can lead to numerical singularities during the evaluation of higher order derivatives 
(as discussed previously) and it is thus advised to apply filters to remove any undesirable artefacts. The 
following notation is used for describing the EoMs. 

 

6(()(̈ + 	8((, (̇) 	= 	3		

	

where 6 ∈ <+#+ denotes the symmetric, positive definite joint space inertia mass matrix, = the number of 

models DoFs and (, (̇, (̈ the joint space generalized coordinates and their derivatives with respect to time. 

The term 8 models all internal and external applied forces (e.g., gravity, Coriolis, GRF, etc.), whereas 3 the 
vector of applied generalized forces that actuate the model. Most of the quantities in the equations are a 
function of the generalized coordinates and derivatives, thus this dependency will be omitted for simplicity.  

When ID is solved, it is preferred to ignore model constraints since a set of (, (̇	and (̈	may not necessarily 
satisfy the constraint algebraic equations. As a result, if a model contains kinematic constraints ID may give 
rise to unreliable estimates of the generalized forces. In this case, ID-based methods may provide a suitable 
solution. Another important misconception is that ID does not necessarily depend on externally applied 
forces, however, it is a common sense that they should be accounted for since their omission will 
significantly alter the result. 

Moving to the solution of ID and as indicated in Figure 3.16, the external forces ""# which are measured 
are low passed filtered. The filtered kinematics as well as filtered external forces are fed to the ID system 

which is also a very fast operation (< 0.5/?). As indicated in Figure 3.17 where we compare the result 

Figure 3.17: Calculated kinematics of the knee joint. Unfiltered kinematics from IK are filtered by the process outlined in this section. The filtered 

kinematics are compared against results obtained from OpenSim when performing the analysis in an offline mode, meaning that OpenSim can apply 

non-casual filters that can better remove the noisy artefacts in the signal. The figure on the right depicts what will be the actual result of the filtered 

signal if one used conventional 4th order low pass Butterworth filter. 
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obtained from the real-time analysis to the one obtained by OpenSim in an offline mode, good agreement 
is observed.  

 

Figure 3.18: Estimated knee moments from ID. Comparison is made by performing an ID analysis through OpenSim in an offline mode, where the 

whole measured kinematics and external forces are available. 

 

Static Optimization (SO) is a method for determining the muscle forces required to satisfy the motion and 
forces of the model. The OpenSim internal implementation requires 1s/iteration to solve the SO problem, 
which is unacceptable for real-time applications. There are many ways to implement and solve the SO 
problem. Here we will outline an approach which can result in a solution that can operate with 10ms delay 
for a model containing 92 muscles. The following optimization problem is being formulated. 
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where, D0	is muscle force /, E is the moment arm matrix and F	the generalized forces obtained from ID. 

The objective of the optimization is to compute the minimal muscle force D0	needed so that the 
contribution of the muscle forces to the joint torques to be equal to the torques computed by ID for each 
time instance. It is called “static” optimization because the performance criterion (i.e., the cost index) is 
confined to quantities that can be computed at any instant in time during a simulation. The bottleneck of 

this formalization is (i) that one must calculate the moment arm matrix E(G) which is a time-consuming 
operation provided that the muscles have complex routing mechanisms and (ii) the optimization must find 
a solution with less iterations to achieve real-time performance (preferably <7).  

To address the first problem, we derived and precomputed a symbolic representation of the moment arm 
matrix as a function of the generalized coordinates. In order to derive a symbolic representation, 
multivariate polynomial fitting was performed on samples of the muscle moment arm at different 
configurations. To reduce the complexity and improve the robustness of the fit, we determined the 
coordinates affecting each element in the moment arm matrix, by identifying the DoFs spanned by each 
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muscle. The sampled and symbolically obtained moment arm of the vastus intermedius (a mono-articular 
muscle) at the knee joint as a function of the knee flexion angle and the moment arm of the hamstring 
muscle at the knee joint as a function of the hip and knee flexion angles are compared. The second problem 
is addressed by providing the previously obtained solution as an initial guess for the next optimization. 
Furthermore, one could adjust the convergence tolerance of the optimization in order to reduce the 
iterations needed to obtain a solution within a desired accuracy of digits. The close match between the 
muscle forces obtained by the proposed real-time optimization and the one obtained from OpenSim can 
be graphically depicted. 

The visualization back-end was developed with the use of the Unity 3D game engine. Unity 3D was selected 
because it offers multiple tools for visualization and gamification and there is already support for multiple 
AR and VR devices, such as the Meta 2 AR headset. A fast communication between the real-time 
musculoskeletal analysis and the visualization process was necessary in order to develop a game with real-
time interventions and feedback. To achieve that kind of demanding communication, especially in latency, 
a shared memory interface was developed. The shared memory interface utilizes the OS capabilities of 
mapping a memory block by one process and then sharing the same block with another process. Providing 
access to the same memory block, the data is available on both processes with almost no delay compared 
to communication techniques utilizing the network stack (i.e., sockets). The shared memory interface 
limitation is that the processes must run on the same computer. The implementation followed a triple buffer 
design in order to ensure that the interface is thread-safe, meaning there are no race conditions or memory 
inconsistencies. 

 

 

Figure 3.19: Triple buffer implementation flow diagram 
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The program flow follows the steps bellow:  

1. The user starts the visualization process.  
2. It bounds the memory block in order to share with the simulation process.  
3. It starts the simulation process via an OS command with the map of the shared memory block as 

a parameter. 
4. The simulation process performs some initialization steps and serializes the model structure (joints, 

bones and muscles) in a json format.  
5. The simulation process provides the json to the visualization process.  
6. The visualization process constructs the skeleton model along with the muscles by deserializing the 

json.  
7. Then asynchronously the simulation process sends all the necessary data to the visualization 

process through the shared memory interface on each frame and the visualization process updates 
the model until the user terminates the application. 

 

3.3 Utility Layer 

Utility layer is the final layer of the Ontology framework, where personalised treatment prediction, 
visualisations, analytics and alerts are contained. Through the game framework, the walking ability of the 
individual can be optimised, the pressure acting on the knee joint is reduced and thus not only the 
progression of OA is delayed, but also the pain is relieved. The user interacts with the system that provides 
the necessary information for a patient’s specific gait. Performance statistics can be stored into the database 
system and processed accordingly by clinicians and Artificial Intelligence (AI) algorithms to adapt and refine 
the patient intervention strategy. Furthermore, this information is presented to the user in a form of a 
progress report or to the clinician for evaluation (more details in section Nonetheless, an AR system can 
be employed to substitute the screen where the game is viewed. The purpose of using an AR system is to 
improve the interaction of the user with the application/game and enhance the user experience. By 
displaying virtual objects in the real environment, not only the user can better comprehend how to walk 
effectively, but also creates an environment that excites the user, stimulates his senses and thus motivating 
him to seek again for this “unique” experience.  

Joint Reaction Analysis (JRA) is used for calculating resultant forces and moments at joint. Specifically, it 
calculates the joint forces and moments transferred between consecutive bodies as a result of all loads acting 
on the model. These forces and moments correspond to the internal loads carried by the joint structure. 
These loads represent the contributions of all unmodeled joint structures that would produce the desired 
joint kinematics, such as cartilage contact and any omitted ligaments. The reaction load acts at the joint 
center (mobilizer frame) of both the parent and child bodies. The loads can be reported and expressed in 
either the child, parent, or ground frames. The default behaviour is to express the force on the child in the 
ground frame. JRA from the data and statistics from the wearable devices as well as the AI DSS must 
operate in real time, so that the participant has instantaneous feedback in order to closely follow his “virtual 
trainer” or to alarm him immediately whether he is executing an irregular – dangerous activity.  

Some of the secondary goals achieved from the design of the games are:  

 The games are easily understandable, and they must not require any long technical manual or 
specialized tutorials. Users must quickly start trying them, and they must feel confidence and security 
while they play.  

 Each game separately becomes a "habit" for the user. This means that users must come back on a 
regular or daily basis to commit mostly repetitive playing.   

 Continuously give meaning, interest, and excitement to the users so they never become boring to play 
the games.   
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 The user must not feel anxious about the technology and the games must seem simple and without 
lags. For example, a simple progress bar is a great feature to help the users get through the waiting 
process. This makes it very clear what the site wants patients to do, how doing it, and emotionally 
rewards them for doing it.   

 Achievements should be awarded for sticking to the desired behaviour.   
 Badges should be awarded for long-term performance after hitting some cumulative target.  
 Levels as a measure of progress, with gradual "unlocking" of game features (e.g., advanced analytics, 

comparative evaluations), designed to engage the player in the early stages of the game. 

Gamification elements, such as rewards, achievements, scores, difficulty level, etc., also, have been 
implemented in order to improve the interaction and engage users to improve their physical activities. The 
effectiveness of this method was further evaluated in the test campaign. It is desirable that the system 
involves sensory feedback, such as IMU measurements, marker-based motion-capture cameras and ground 
reaction forces. In this case, this information can be transmitted to a station or to the smart device 
(smartphone) for processing in order to reconstruct the kinematics and dynamics in real-time. Provided 
this information, the system will be able to compare the performance of the user with respect to a desired 
profile and provide detailed guidelines for the correct execution of the gait. This information can also be 
used by the AI and simulation pipelines, in an offline mode, to provide detailed information on the contact 
pressure and other quantities of interest that can be used to refine the personal intervention strategy. Finally, 
instead of displaying the game and the visual information on a screen the system can incorporate an element 
of AR feedback, in order to enhance the user experience and effectiveness of the game. In this case, the 
system provides visual cues and information statistics in real-time. This results in correct execution of the 
gait and will motivate and engage the user to increase its daily physical activities. 

The gait retraining activity is ideally adapted to the games’ playing script. The user’s physical performance 
and tolerance is accounted for by the game, in order to adjust the positioning of the patient and duration 
of the training. The features that the game must have in order to motivate the user, are the following:  

● Enactive mastery experiences (e.g., goal setting, discussion of performance and progress) • 
Vicarious experiences (e.g., role modelling, storytelling)  

● Verbal persuasion (e.g., education, support, encouragement) 
● Physiological and effective feedback (e.g., monitoring the emotional and physical burden, managing 

discomfort).  

The visualization of the skeleton, thus of each bone is achieved using the same 3D models of simulation. 
Unity 3D does not support the format VTP natively, so a special importer was developed in order to load 
the 3D geometry in the Unity 3D environment. The initial json file contains all the information about the 
position, rotation and scale for each 3D model of all bones, as some bones consist of multiple 3D models. 
Each update cycle again contains information about the position, rotation and scale of each bone in world 
coordinates.  

The geometry of muscles is generated procedurally based on a couple of points provided by the simulation 
process. In order to achieve a smooth and close to reality result for the muscle geometry, a centripetal 
Catmull-rom spline is calculated from the waypoints. Catmull-rom spline was preferred as it goes through 
its control points. 
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Based on the spline S, elliptical rings (<2) of vectors are created and the consecutive vector rings form the 

triangles (H2) of the 3D mesh. To create the elliptical rings a local orthogonal system was calculated for each 

interpolation step. Based on the up and right vector of that system, two radius parameters A2, I2 and the 
parametric representation of ellipse based on sine and cosine functions, the position of each vector was 
calculated  

J2 = .2 + KL2 ∙ A2 ∙.N? .N?	O	 + P+Qℎ@2 ∙ I2 ∙?+= ?+=	O	,0 ≤ O ≤ 2T, 0 ≤ @ ≤ 1  

A special shader was also developed in order to create the texture of the muscle based on the geometry. In 
detail, at the two endpoints all triangles are coloured with a white colour to look like tendons and gradually 

turn to a dark red colour with darker stripes based on the O	angle described above to look like myofibrils. 
In addition to the structural colours of the muscle (tendons, myofibrils), there is also a highlight colour that 
indicates the calculated activation of the muscle. The final colour of the muscle is the result of blending the 

structural colours and the highlight colour. Activation range is [0,1], so the blending is based on this 
number with linear interpolation.  

X*"()-2 = A ∙ X3!43-!432 + (1 − A) ∙ X(2*),2)*'- , where A is the activation of the muscle. 

The update of all muscles is performed in each frame according to the new waypoints provided by the 
simulation process, respecting the restriction surfaces and their highlight colours are updated based on the 
calculated muscle activations.  

The reaction forces are visualized via a 3D line, where the two endpoints are provided by the equations 
below: 

?@AP@_LN+=@ = 8NP.Z_ALL[+.A@+N=_LN+=@,	

Z=B_LN+=@ = ?@AP@_LN+=@ + 8NP.Z_JZ.@NP  

The point, that the force is applied, is the centre of the joint or the contact point with the ground depending 
on if the related visualization is a joint reaction force or a ground reaction force.  

Even though the users can easily comprehend the reaction forces visualization, they do not provide an 
intuitive way to keep track of them over time and grasp a better overview of complex movements like 
walking. The most simple and intuitive method for time-varying data is the utilization of 2D plots, where 
the user can easily comprehend the related data through the whole movement, identify local extrema where 
there is possible violation of thresholds. Plots also provide an intuitive way for the user to detect patterns 
like the movement cycles and easily find the correspondences between the displayed data points and the 
points in time relevant to the movement cycle.  

Apart from the reaction forces visualization and the plots, a minimal implementation of the posture score 
as part of the initial gamification. Scores, as gamification elements, provide an extra layer of abstraction and 
ease the learning curve for the users. In that context, a new user can easily track only the score and by 
intuitively finding correspondences between the score values and patterns in the plots, the user learns how 
to interpret the plots and classify the “bad” and “good” movement patterns. 
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Plenty of visualization elements developed in order to accomplish the gamification approach. Minimal 
visualizations take place during the real-time exercise in order to motivate the user’s engagement and 
motivation, but not disorient the user’s focus from the main objective.  

More visualizations included with the objective to help the user identify the movement deviations from the 
ideal movement such as red colour highlighting of the failing part of the body (joint or muscle), along with 
a relevant highlighting in the corresponding plot indicating the local extrema which signifies the flaw. A 
semi-transparent model also is visible above the opaque model, which reflects the user’s movement and 
acts as a guide for the user to learn the exercise and has a visual reference of the ideal movement. Basically, 
the ghost model shows the ideal position for each part of the body for the next step of the exercise, so the 
user can train in a speed of their choice and not chase a pre-recorded animation, with the exception of the 
exercises that the speed is important. Other supportive tools developed like:   

● Auto rotation of the model, so that the failing part of the body is visible from the user.   
● Auto plot selection related to objective of the user and of the exercise, since not all the 

measurements can be presented at once.   
● Audio feedback synchronized with the visuals to improve user’s identification and memory 

stimulation. 

Apart from the real-time visualizations, some graphs and overview plots of stats and progression metrics 
are part of the developments. These visualizations act both as gamification elements and analysis 
components. Such visualizations are:   

● Spider graph of scores categorized by exercise.   
● User’s progression graph based on scores.   
● Calendar view with collected medals, daily challenges completed. 
● Display measured or simulated data that are most relevant to the task goal. 
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 Conclusions 
Deliverable D6.6 Ontology-based framework for data standardisation constitutes a vital part of the 
OACTIVE project. It is the link that makes the inter-process communication of the project possible. In 
this deliverable the presentation of a unified way to interact with the vast amount of the collected/generated 
data, the interaction between the data, the important variables and the information extraction through an 
upper framework is implemented. All these procedures are possible via an intricate architecture that takes 
into consideration all the possible needs of the project’s data interaction (self-generated or imported data). 
Through the layers of this architecture processes take place, that export information from a huge amount 
of clinical data collection collected or generated from biomarkers, sensors, and augmented reality. Also, this 
architecture manages exogenous/environmental risk factors as also, medical, and socioeconomic data. All 
the extracted information is used for personalised treatment prediction, visualizations, analytics, and alerts 
that creates a friendly, helpful, and motivational environment for the patient. 
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