
OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D9.3                                                                                                                               1     
 

 

 

 

 

 PROJECT DELIVERABLE REPORT  

 

 

 
 

Project Title: 

Advanced personalised, multi-scale computer models preventing osteoarthritis 

SC1-PM-17-2017 - Personalised computer models and in-silico systems for well-being 

 

 

Deliverable number D9.3 

Deliverable title Evaluation of OACTIVE models in big data 

registries 

Submission month of deliverable M42 

Issuing partner LJMU 

Contributing partners ALL 

Dissemination Level (PU/PP/RE/CO): PU 

  
Project coordinator University of Nicosia (UNIC) 

Tel: +357 22 841 528 

Fax: +357 22 357481 

Email: felekkis.k@unic.ac.cy & 

giannaki.c@unic.ac.cy  

Project web site address www.oactive.eu 

 

 

 

 

 

 

 

 

 

Ref. Ares(2021)2952278 - 04/05/2021

mailto:felekkis.k@unic.ac.cy
mailto:giannaki.c@unic.ac.cy


OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D9.3                                                                                                                               2     
 

 

Revision History 

Version Date Responsible Description/Remarks/Reason for 

changes 

1.0 2/4/2021 LJMU, CERTH First Draft 

1.1 16/4/2021 UNIC, HULAFE Review of First Draft 

1.2 28/4/2021 LJMU, CERTH Review of Second Draft 

1.3 30/4/2021 LJMU Final Version Review & Submission 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D9.3                                                                                                                               3     
 

Contents 

Revision History 2 

1.  Summary 4 

2.  Introduction 4 

3.  Baseline performance with PCA 6 

4. Validation of OACTIVE Models 13 

4.1 Personalised Prediction of KL progression 13 

4.2 Personalised Prediction of Pain progression 20 

4.3 Personalised Prediction of JSN progression 23 

4.4 Increasing generalization using an evolutionary Machine Learning approach 28 

4.5 Diagnosis of KOA based on KL grade 32 

5. Machine Learning and Deep Learning Diagnosis models with focus on accuracy and fairness 34 

6. Quantifying of MRI impact 43 

7. Interpretable models 57 

8. Conclusions 59 

8. References 62 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D9.3                                                                                                                               4     
 

1.  Summary 

The first aim of this deliverable (Task 9.2) is to present the results and outcomes of the long-term evaluation 

of OACTIVE using data from big data registries. The rest of this deliverable is organised as follows. Section 

2 presents the main concept of this deliverable. Section 3 Baseline performance with PCA presents an 

extensive analysis of the OAI database. The validation of the proposed OActive models is given in Section 

4. In Section 5 Machine Learning and Deep Learning Diagnosis models with focus on accuracy and fairness 

are presented. Section 6 presents an approach for the quantification of MRI impact. The Interpretable 

models are presented in Section 7. The deliverable ends with Section 8 Conclusions, which mentions the 

future expectations and advantages of the proposed works in knee osteoarthritis. 

This report refers to Deliverable 9.3, which relates to the OACTIVE WP 9, “Technology assessment and 

full system validation” led by LJMU. The objective of WP9 is to validate the integrated OACTIVE system 

by employing a comprehensive methodology that involves: (i) Clinical studies in human populations and 

(ii) validation of the system using big data registries. The ethical, legal, and social challenges that need to be 

met in order for the scientific advances to be responsibly applied will be finally investigated. 

2.  Introduction 

The integrated OACTIVE hyper-model validated using a big data registry, namely Osteoarthritis Initiative 

(OAI). This initiative has collected substantial amounts of imaging, lifestyle, and biochemical data and other 

complementary data streams on the healthy subjects, and patients affected by Osteoarthritis (OA). In 

OACTIVE, we combined all of this information allowing for the first time the simultaneous exploration 

of multiple risk factors in big human populations involving thousands of patients. In task, the big data 

methodology, developed in WP6, will search through massive amounts of information, analysing it to 

predict outcomes for individual patients. That information will include data from past treatment outcomes 

with the outcome not only to predict but also to reveal surprising associations in data that our human brains 

would never suspect. In terms of the validation, patient-specific data with follow-ups of more than 100 

months will be used as follows: the personalised models will be built using data from the first months and 

the efficiency of OACTIVE will be tested using the latest data available against the following criteria: 

prediction accuracy and maximum prediction timeframe. The personalised models will be finally 

progressively updated incorporating more information from subsequent months and the predictive 

performance of the models will be estimated per case. 

 

In this report, we will present an extensive analysis of the OAI database. We start our analysis by presenting 

the main characteristics of this database, in terms of correlation, with Pearson’s correlation coefficient 

technique, and in terms of variable importance analysis, by utilizing the Random Forests Variable 

Importance. Afterwards, we visualise the data into two dimensions by utilising the PCA technique, and we 

colour each sample with the class it represents. Finally, in order to validate the datasets, we apply several 

classification models, such as Multinomial Logistic Regression, Linear Discriminant Analysis, k-Nearest 

Neighbours, Random Forests, and XGBoost.  

 

Then, we proceeded to the evaluation of the personalized models, which were developed in Deliverable 6.3 

and Deliverable 6.5. The training and the validation of the personalized models was based on the 

Osteoarthritis Initiative (OAI) database. Initially, we validated the personalized prediction of KL 

progression model. The novelty of the proposed FS methodology lies in the combination of different well-

known approaches including filter, wrapper, and embedded techniques, whereas feature ranking is decided 

on the basis of a majority vote scheme to avoid bias. The validation of the selected factors was performed 

in data subgroups employing seven well-known classifiers in five different approaches. A 74.07% 

classification accuracy was achieved by SVM on the group of the first fifty-five selected risk factors. 

Furthermore, the effectiveness of the proposed approach was evaluated in a comparative analysis with 
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respect to classification errors and confusion matrices to confirm its clinical relevance. Then, two 

approaches validated for the personalized prediction model of the Pain progression. The main goal of the 

study was to build a prognostic tool that will predict the progression of pain in KOA patients using data 

collected at baseline. Various machine learning algorithms to classify, whether a patient’s pain with KOA, 

will stabilize, increase or decrease. These models have been implemented on different combinations of 

feature subsets, and results up to 84.3% have been achieved with only a small amount of features. The 

proposed methodology demonstrated unique potential in identifying pain progression at an early stage, 

therefore, improving future KOA prevention efforts. The second approach relies on an innovative 

evolutionary Machine Learning methodology capable of achieving state-of-the-art accuracy results. The 

prediction task is decomposed into local binary classification problems, which are treated separately with 

tailored ML models trained on selected feature subsets, whereas the final prediction is derived by fusing the 

outputs of these local models. The nature of the selected risk factors is discussed and the superiority of the 

proposed methodology is finally demonstrated compared to well-known ML algorithms. 

 

Subsequently, the personalised prediction of knee joint space narrowing (JSN) progression was validated in 

each knee and in both knees combined. The proposed methodology employs: (i) A clustering process to 

identify groups of people with progressing and non-progressing JSN; (ii) a robust feature selection (FS) 

process consisting of filter, wrapper, and embedded techniques that identifies the most informative risk 

factors; (iii) a decision making process based on the evaluation and comparison of various classification 

algorithms towards the selection and development of the final predictive model for JSN; and (iv) post-hoc 

interpretation of the features’ impact on the best performing model. The results showed that bounding the 

JSN progression of both knees can result in more robust prediction models with higher accuracy (83.3%) 

and with fewer risk factors (29) compared to the right knee (77.7%, 88 risk factors) and the left knee (78.3%, 

164 risk factors), separately.  

To increase the generalization, we used and validated an evolutionary Machine Learning approach as 

described in Deliverable 6.5. This work overcomes two crucial challenges: (i) the observed high 

dimensionality and heterogeneity of the available data that are obtained from the Osteoarthritis Initiative 

(OAI) database and (ii) a severe class imbalance problem posed by the fact that the KOA progressors class 

is significantly smaller than the non-progressors’ class. The proposed feature selection methodology relies 

on a combination of evolutionary algorithms and machine learning (ML) models, leading to the selection 

of a relatively small feature subset of 35 risk factors that generalizes well on the whole dataset (mean 

accuracy of 71.25%). We investigated the effectiveness of the proposed approach in a comparative analysis 

with well-known FS techniques with respect to metrics related to both prediction accuracy and 

generalization capability. The impact of the selected risk factors on the prediction output was further 

investigated using SHapley Additive exPlanations (SHAP).  

Furthermore, we validated the robust data mining approach that could identify important risk factors which 

contribute to the diagnosis of KOA and their impact on model output, with a focus on post-hoc 

explainability. The validation of the extracted factors was performed in subgroups employing seven well-

known classifiers. A 77.88 % classification accuracy was achieved by Logistic Regression on the group of 

the first forty selected (40) risk factors. We investigated the behavior of the best model, with respect to 

classification errors and the impact of used features, to confirm their clinical relevance. The interpretation 

of the model output was performed by SHAP.  

At this point, we ought to emphasize that this work makes a contribution towards KOA diagnosis through 

the application of DNN models on self-reported clinical data. To the best of our knowledge, this work 

contains original content in the first-ever validation of machine and deep learning models with respect to 

fairness in the KOA classification research. Through this study, different DNN architectures were tested 

for their ability to recognise participants with symptomatic KOA or being at high risk of developing KOA 
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in one knee at least. Different subgroups were investigated defined by gender, age, and obesity. The 

subgroups considered are (i) participants older than 70 years, (ii) participants under 70 years old, (iii) male 

participants, (iv) female participants, (v) non-obese, and (vi) obese participants. The performance of the 

proposed DL methodology was validated in terms of both accuracy and fairness calculated using the 

aforementioned subgroups. Finally, a comparative analysis was conducted with various benchmark machine 

learning algorithms aiming to show the superiority of the proposed DNN structure for the knee OA 

classification task. 

 

Quantifying the MRI impact, we present an extensive analysis of the OAI MRI dataset. To perform a 

complete analysis of this data we distinct it in 9 variables’ categories dataset, and we analyse them separately. 

We start our analysis by presenting the main characteristics this database. In terms of correlation, with 

Spearman’s correlation coefficient technique. In terms of variable importance analysis by utilizing the 

Random Forests Variable Importance. We do an extensive analysis of both the Principal Components 

Analysis and the Random Projections techniques to apply dimensionality reduction in our data. Afterwards, 

we visualise the data into two dimensions by utilising the PCA technique, and we colour each sample with 

the class it represents. Finally, in order to validate the datasets, we apply several classification models, such 

as Multinomial Logistic Regression, Linear Discriminant Analysis, k-Nearest Neighbours, Random Forests 

and XGBoost. End, predictions for clinical data were also validated on the Multicenter Osteoarthritis Study 

(MOST), which has over 2000 observations acquired with a different protocol than the OAI study. This 

allows an extensive external validation to be carried out for the diagnostic and prognostic statistical models 

developed by OACTIVE. 

 

3.  Baseline performance with PCA 

Clinical Data Presentation 

The entire OAI data set consists of 1187 variables, one response variable, and 4796 observations. From the 

1187 variables, for the classification we are about to execute, 727 variables were suggested for use to be 

relevant to the classes we are about to predict. 

From the 4796 observations, we removed the observation with no value in the response variable, this way 

only 1936 observations were left in the data set. Finally, from the initial analysis of the data, it was 

determined that from the 727 variables, the 566 variables are categorical and the remaining 161 are 

numerical variables. 

The response variable is a two classes categorical variable. The first class, represented with “0”, is the class 

of a person without osteoarthritis which will not present osteoarthritis in the near future. The second class, 

represented with “1”, is the class with a person who in the near future will present osteoarthritis in one or 

both of his knees. From now on the second class represented with “1” will be considered as the positive 

class. 

Correlation analysis of the selected variables saw that there are highly correlated variables inside the data 

set [1]. In the figure below we can see how many variable pairs are correlated (positively or negatively) and 

to what degree. 

 



OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D9.3                                                                                                                               7     
 

 
Figure 1. Correlation of variables. 

 

To produce the above figure, a correlation matrix was created with the Pearson's correlation coefficient 

metric. From this matrix, we removed the values of the major diagonal because it represents pairs of the 

same variables which  correlate 1. 

 

Data preprocessing 

The first step of the preprocessing of the data is the removal of the highly correlated variables. The variables 

were removed where variables with absolute correlation value above 0.7. As a result, 10 variables were 

removed leaving 717 variables. The variables removed are "V00WPLKN5", "V00WOMKPL", 

"V00WPLKN1", "V00KOOSYML", "V00FFQFLG5", "V00FFQFLG1", "V00NSKIP", 

"V00FFQFLG2", "P01SVXRRKR" and "P01SVRKMI". 

 

Feature selection (Variable Importance) 

One more preprocessing step executed for the data set is the Variable Importance Analysis with the use of 

the Random Forest Algorithm (RF). By using the Mean Decrease in Accuracy (MDA) measure. The resulted 

variables’ selection was NOT used in the analysis. Its purpose is a better understanding of the data set. 

 

To calculate the MDA with the RF algorithm the permuted out-of-bag (OOB) data were used. Specifically, 

it was done by recording the prediction error on the OOB portion of data, for each tree. The same process 

is repeated after permuting each predictor variable. The difference between the two (Decreases in Accuracy 

of Trees) is then averaged over all trees, and normalized by the standard deviation of the differences.  

 

MDA =  
𝑀𝑒𝑎𝑛(𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑖𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑇𝑟𝑒𝑒𝑠)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑖𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑇𝑟𝑒𝑒𝑠)
 

 

For the calculation of the importance of the OActive’s dataset variables, an RF model was created with the 

use of 717 raw variables. This model creation was possible because RF is a decision tree-based algorithm. 
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This means that there is no need to convert the categorical variables to numeric with the use of dummy 

variables. 

That way the following figure was created. In this figure, the 100 variables with the highest MDA score, are 

presented in descending order, from the most important to the less important. 

 

 
Figure 2. Variables with the highest MDA score. 
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Missing values treatment methods 

The next preprocessing step of the analysis is the treatment of the missing values. The final count of values 

in the data set is 1,409,408 and from those 49,180 values are missing consisting the 3.49% of missing values. 

After careful examination of the data set, it was determined that the type of missing values mechanism, is 

that the values are missing completely at random. Furthermore, the missing values are scattered within the 

data set. 

For this reason, no special imputation method was used in the data set. The imputation methods used were 

mean imputation for the numerical variables and simple dummy variables creation for the categorical. 

 

Data normalization 

For the normalization of the data, the technique of min-max scaling or min-max normalization was used. 

This technique consists of rescaling the range of features to scale the range in [0, 1] or [−1, 1]. Selecting the 

target range depends on the nature of the data. The general formula for a min-max of [0, 1] is given as: 

 

𝜒′ =  
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥) 
 , 

 

where x is an original value, and x ′ is the normalized value. After the scaling of the data, the ranges of the 

100 first variables are sawn in the figure below. 

 

Dimensionality reduction 

From the preprocessing of the data so far, a huge number of new predictor variables was created, enough 

so that even state-of-the-art classification techniques would strangle to produce acceptable results. The 

solution to that challenge is the use of a dimensionality reduction technique [2,3]. 

 

The dimensionality reduction technique used for this data set is the technique of Random Projection. 

Specifically, a projection matrix was created with the use of Gaussian Distribution. The dimensions of the 

resulted vector space are 370 as it was recommended from the implementation method RanPro of the 

Random Projections technique in R. This recommendation was produced by using the Johnson-

Lindenstrauss (JL) lemma with an error tolerance of 0.5. 

 

Visualization of the data 

For the visualization of the data, the Principal Components Analysis was utilized. The projection of the 

data on the first 2 principal components is given in  Figure 3 below. 
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Figure 3. Principal Components Analysis for OAI data. 

 

As it is immediately apparent from the representation of the data, the Classes “0” and “1” aren’t segregated 

at all. As the density plots of each principal component represent, they have almost identical distribution in 

the space. Form this visualization the first conclusion that is drawn is that we have an almost impossible 

classification problem. 

 

Classification tasks 

The classification algorithms used for this data set are the Multinomial Logistic Regression (MLR), the 

Linear Discriminant Analysis (LDA), the k-Nearest Neighbors (kNN), the Random Forest (RF), and finally 

the XGBoost. 

The results of the classifications can be seen in Table 1 below. The measures used are accuracy, sensitivity, 

and specificity. 

 

Table 1. Classification results.  

 

 ACCURACY SENSITIVITY SPECIFICITY 

MLR  0.838  0  1  

LDA  0.703  0.159  0.864  

KNN  0.765  0.022  0.986  

RF  0.770  0  1  

XGBOOST  0.760  0  0.986  

 

As it becomes apparent from the results of all the classification algorithms, even though they have good 

accuracy, they cannot predict the positive class well enough or not at all. This resulted accuracy is an 
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immediate consequence of the amount of “0” contained response variable. Specifically, 82.4% of the results 

belong to the class “0” and only 17.6% of the results belong to the class “1”. In Figures 4-8 below, the Ro 

Curves  illustrating the above problem are presented: 

 

MLR 

 
Figure 4. AUC for MLR model. 

 

LDA 

 

 
Figure 5. AUC for LDA model. 
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KNN 

 
Figure 6. AUC for KNN model. 

 

 

RF 

 
Figure 7. AUC for RF model. 
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XGBoot 

 
Figure 8. AUC for XGBoost model. 

 

The extensive analysis presented in this report shows us the high quality of OAI’s database. The findings 

of this analysis gave us valuable insight into this database. We found that it is a dataset that contains a large 

number of correlated variables. This results in a not-so-separable dataset, as shown even in all classification 

tasks. In the first look, the resulted accuracy is over 0.7 in all cases. But if we count the unbalanced nature 

of the data in combination with the sensitivity, which is below 0.16 in all cases, we can conclude that the 

positive class is not predicted by the classification models. To cope with this limitation of the data we 

proposed several technics which have described in Deliverable 6.3 and Deliverable 6.5 and validated below.   

 

4. Validation of OACTIVE Models 

In this section, we provide the evaluation criteria, the performance, and the interpretation of the 

personalised models [4-8].  

4.1 Personalised Prediction of KL progression  

Validation 

A hold-out 70–30% random data split was applied to generate the training and testing subsets, respectively. 

Learning of the ML was performed on the stratified version of the training sets and the final performance 

was estimated on the testing sets. We also evaluated the classifiers performance in terms of the confusion 

matrix as an additional evaluation criterion. 

 

Confusion matrix is a way to evaluate the performance of a classifier. Specifically, a confusion matrix is a 

summary of prediction results on a classification problem (Table 2). To be created the confusion matrix, 

the number of correct (true) and incorrect (false) predictions are summarized with count values and broken 

down by each class. 
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Table 2. Confusion matrix. 

  Actual Classes 

  Positive Negative 

Predicted classes 
Positive True Positive False Positive 

Negative False Negative True Negative 

 

Prediction Performance 

The proposed ML methodology was applied to each of the five datasets. Specifically, the proposed FS was 

executed on the pre-processed versions of the datasets ranking the available features for their relevance 

with the progression of OA. Then the proposed ML models were trained on feature subsets of increasing 

dimensionality (with a step of 5). These feature subsets were generated by sorting the features according to 

the selected ranking. This means that the proposed ML models were trained to classify KOA progressors 

and non-progressors based on the first (5, 10, 15, etc.) most informative features, and the testing 

classification accuracies were finally calculated until the full feature set has been tested. The classification 

results on the five datasets are given below.  

 Dataset A 

Table 3 summarizes the results of logistic regression, XGboost, SVM, random forest, KNN, naive Bayes 

and DT on the two-class problem. A moderate number of features (in the range of 30–55) was finally 

selected by the majority of the ML models (in five out of the seven), whereas the overall maximum was 

achieved by LR on a group of fifty selected (50) risk factors. KNN and DTs selected more features (145 

and 85, respectively) leading to low accuracies. The second highest accuracy was received for SVM and 

Naive Bayes (70.73% in both), whereas lower accuracies were obtained by NB, RF, and XGboost. 

Table 3. Best testing accuracies achieved for ML model along with the confusion matrix, the optimum number of 

features, and the hyperparameters of the ML models employed. A1 and A2 denote classes 1 and 2 of dataset A, 

respectively. 

Models 
Accuracy 

(%) 

Confusion 

Matrix 
Features Parameters 

Logistic 

Regression 
71.71 

 A1 A2 

50 Penalty: l1, C: 1.0 A1 73 28 

A2 30 74 

Naive Bayes 70.73 

 A1 A2 

55 GaussianNB A1 72 29 

A2 31 73 

SVM 70.73 

 A1 A2 

45 C = 2, kernel = sigmoid A1 75 26 

A2 34 70 

KNN 66.83 

 A1 A2 

145 
leaf_size: 1, n_neighbors: 12, weights: 

distance 
A1 78 23 

A2 45 59 

Decision Tree 65.85 

 A1 A2 

85 

max_features: log2, 

min_samples_leaf: 4, 

min_samples_split: 11 

A1 68 33 

A2 37 67 

Random 

Forest 
68.78 

 A1 A2 

30 

criterion: gini, min_samples_leaf: 3, 

min_samples_split: 7, n_estimators: 

15 

A1 71 30 

A2 34 70 

XGboost 67.8  A1 A2 45 
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A1 69 32 gamma: 0, max_depth: 1, 

min_child_weight: 4 A2 34 70 

 Dataset B 

The accuracies and confusion matrixes reported in Table 4 verify the aforementioned results. In all the 

competing models, the best accuracies were recorded using a relatively small number of selected risk factors 

(less or equal to 40). 

Table 4. Best testing accuracies achieved for each ML model along with the confusion matrix, the optimum number of 

features, and the hyperparameters of the ML models employed. B1 and B2 denote classes 1 and 2 of dataset B, 

respectively. 

Models 
Accuracy 

(%) 

Confusion 

Matrix 
Features Parameters 

Logistic 

Regression 
63.98 

 B1 B2 

25 Penalty: l1, C: 1.0 B1 48 22 

B2 36 55 

Naive Bayes 63.98 

 B1 B2 

35 GaussianNB B1 50 20 

B2 38 53 

SVM 61.49 

 B1 B2 

35 C: 6, kernel: linear B1 46 24 

B2 38 53 

KNN 57.76 

 B1 B2 

15 
leaf_size: 1, n_neighbors: 16, weights: 

uniform 
B1 63 7 

B2 61 30 

Decision Tree 58.39 

 B1 B2 

15 
max_features: auto, min_samples_leaf: 

1, min_samples_split: 6 
B1 41 29 

B2 38 53 

Random 

Forest 
62.11 

 B1 B2 

15 
criterion: gini, min_samples_leaf: 2, 

min_samples_split: 7, n_estimators: 30 
B1 48 22 

B2 39 52 

XGboost 60.25 

 B1 B2 

40 
gamma: 0.4, max_depth: 7, 

min_child_weight: 5 
B1 44 26 

B2 38 53 

 Dataset C 

Less informative features with small generalization capacity are contained in dataset C, as reported in Table 

5. Unlike the previous two datasets, the best testing performance for dataset C was received at 225 features 

using DTs (66.67%). In general, unstable and low testing performances were observed for the majority of 

the employed ML models. The second highest accuracy was received for SVM (65.28%), whereas lower 

accuracies were obtained by the rest of the models. A significant number of features (more than 100) was 

also required in five out of the seven FS approaches highlighting the inability of dataset C features to 

provide useful information for the progression of KOA. 

Table 5. Best testing accuracies achieved for each ML model along with the confusion matrix, the optimum number of 

features, and the hyperparameters of the ML models employed. C1 and C2 denote classes 1 and 2 of dataset C, 

respectively. 
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Models 
Accuracy 

(%) 

Confusion 

Matrix 
Features Parameters 

Logistic 

Regression 
61.11 

 C1 C2 

35 Penalty: l1, C: 1.0 C1 49 15 

C2 41 39 

Naive Bayes 59.03 

 C1 C2 

160 GaussianNB C1 23 41 

C2 18 62 

SVM 65.28 

 C1 C2 

65 C: 5, kernel: rbf C1 48 16 

C2 34 46 

KNN 61.11 

 C1 C2 

120 
leaf_size: 1, n_neighbors: 5, weights: 

uniform 
C1 55 9 

C2 47 33 

Decision Tree 66.67 

 C1 C2 

225 
max_features: auto, min_samples_leaf: 2, 

min_samples_split: 8 
C1 44 20 

C2 28 52 

Random 

Forest 
59.72 

 C1 C2 

140 
criterion: gini, min_samples_leaf’: 1, 

min_samples_split: 5, n_estimators: 25 
C1 37 27 

C2 31 49 

XGboost 62.5 

 C1 C2 

150 
n_estimators = 100, max_depth = 8, 

learning_rate = 0.1, subsample = 0.5 
C1 44 20 

C2 34 46 
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 Dataset D 

The combination of datasets A and B proved to be beneficial in the task of predicting KOA progression. 

Specifically, the following conclusions are drawn from the results reported in Table 6: (i) The best 

performance (74.07%) was achieved by the SVM on the group of the fifty-five selected risk factors with 

linear kernel penalty and C = 0.1 (Dataset D). This performance was the overall best one achieved in all 

five datasets. (ii) The second highest accuracy was received for the logistic regression (72.84%), whereas 

lower accuracies were obtained by the rest of the models. (iii) SVM and LR followed a similar progression 

in the reported accuracies with respect to the number of selected features with an upward trend in the first 

20–55 features, followed by a slight performance decrease as the number of features increases. (iv) KNN 

gave moderate results with a maximum testing performance of 71.6% at 75 selected features. (v) Low testing 

accuracies were obtained by RF, XGboost, and DT in the range of 42.59–66.67%. 

 

Table 6. Best testing accuracies achieved for each ML model along with the confusion matrix, the optimum number of 

features and the hyperparameters of the ML models employed. D1 and D2 denote classes 1 and 2 of dataset D, 

respectively. 

Models 
Accuracy 

(%) 

Confusion 

Matrix 
Features Parameters 

Logistic 

Regression 
72.84 

 D1 D2 

55 Penalty: l1, C: 1.0 D1 54 27 

D2 17 64 

Naive Bayes 68.52 

 D1 D2 

20 GaussianNB D1 44 37 

D2 14 67 

SVM 74.07 

 D1 D2 

55 C: 0.1, kernel: linear D1 56 25 

D2 17 64 

KNN 71.6 

 D1 D2 

75 
algorithm: auto, leaf_size: 1, 

n_neighbors: 17, weights: uniform 
D1 55 26 

D2 20 61 

Decision Tree 61.73 

 D1 D2 

30 
max_features: auto, min_samples_leaf: 

3, min_samples_split: 10 
D1 56 25 

C2 37 44 

Random 

Forest 
66.67 

 D1 D2 

20 
criterion: gini, min_samples_leaf: 3, 

min_samples_split: 3, n_estimators: 25 
D1 47 34 

D2 20 61 

XGboost 64.81 

 D1 D2 

15 
gamma: 0.6, max_depth: 1, 

min_child_weight: 8 
D1 51 30 

D2 27 54 

 

 

 Dataset E 

In dataset E, the SVM-based approach exhibited a maximum of 71.81% at 70 features (which was the best 

in the category). Similar to SVM, LR gave the second-highest accuracy (71.14%) for fewer features (55). 

XGboost also gave a comparable performance (70.47%) in a subset of 45 selected features. Lower testing 

accuracies were received by the rest of the ML models (Table 7). 
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Table 7. Best testing accuracies achieved for each ML model along with the confusion matrix, the optimum number of 

features, and the hyperparameters of the ML models employed. E1 and E2 denote classes 1 and 2 of dataset E, 

respectively. 

Models 
Accurac

y (%) 

Confusion 

Matrix 
Features Parameters 

Logistic 

Regression 
71.14 

 E1 E2 

55 Penalty: l1, C: 1.0 E1 50 17 

E2 26 56 

Naive 

Bayes 
68.46 

 E1 E2 

230 GaussianNB E1 48 19 

E2 28 54 

SVM 71.81 

 E1 E2 

70 C: 1, kernel: sigmoid E1 50 17 

E2 25 57 

KNN 63.76 

 E1 E2 

20 
algorithm: auto, leaf_size: 1, 

n_neighbors: 16, weights: uniform 
E1 48 19 

E2 35 47 

Decision 

Tree 
66.44 

 E1 E2 

95 
max_features: auto, min_samples_leaf: 

2, min_samples_split: 12 
E1 45 22 

E2 28 54 

Random 

Forest 
67.11 

 E1 E2 

55 
criterion: gini, min_samples_leaf: 1, 

min_samples_split: 3, n_estimators: 30 
E1 42 25 

E2 24 58 

Xgboost 70.47 

 E1 E2 

45 
gamma: 0.6, max_depth: 2, 

min_child_weight: 1 
E1 43 24 

E2 20 62 

Table 8 cites the best accuracies achieved in each of the five datasets. The combined effect of baseline 

features (dataset A) and progression data (dataset B) had a positive effect on the prediction capacity of the 

proposed methodology, as clearly shown in Table 7 where the testing accuracy in dataset D is increased by 

2.36% compared to the result obtained in dataset A. A minor difference (0.1%) is observed on the 

accuracies reported for datasets A and E, demonstrating that progression data have a negligible effect on 

the predictive capacity of the proposed methodology and therefore could be omitted. The accuracies 

received in datasets B and C reveal that the baseline features are crucial for predicting KOA progression. 

Table 8. Summary of all reported results. 

Dataset 

Data Used in the Training 

Best Testing 

Performance (%) 

Achieved 

Best 

Model 

Num. of 

Selected 

Features 
Baseline 

M12 

Progress 

Wrt 

Baseline 

M24 

Progress 

Wrt 

Baseline 

A    71.71 
Logistic 

Regression 
50 

B    63.98 
Logistic 

Regression 
25 

C    66.67 
Decision 

Tree 
225 
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D    74.07 SVM 55 

E    71.81 SVM 70 

 

 

Discussion 

This work focuses on the development of an ML-empowered methodology for KL grades prediction in 

healthy participants. The prediction task has been coped as a two-class classification problem where the 

participants of the study were divided into two groups (KOA progressors and non-progressors). Various 

ML models were employed to perform the binary classification task (KOA progressors versus non-

progressors) where accuracies up to 74.07% (Dataset D) were achieved. Within the secondary objectives of 

the work were to identify informative risk factors from a big pool of available features that contribute more 

to the classification output (KOA prediction). Moreover, we explored three different options with respect 

to the time within which data should be considered in order to reliably predict KOA progression.  

 

To accomplish this, we worked with 5 different datasets. We first examined whether baseline data (dataset 

A) could solely contribute in predicting KOA progression. Going one step further, the features’ progression 

within the first 12 months or 24 months was also considered as an alternative source of information 

(datasets B and C). The aforementioned analysis in Section 4 revealed that: (i) a 71.71% prediction 

performance can be achieved using features from the baseline, (ii) features’ progression cannot solely 

provide reliable KOA predictions and (iii) a combination of features is required to maximize the prediction 

capability of the proposed methodology. Specifically, the overall best accuracy (74.07%) was obtained by 

combining datasets A and B that contain features from the baseline visit along with their progression over 

the next 12 months. Considering a longer period (24 months) in the calculation of features’ progression 

resulted to lower prediction accuracies (71.81%).  

 

The proposed FS methodology outperformed six well-known FS techniques achieving the best tradeoff 

between prediction accuracy and dimensionality reduction. From the pool of approximately 700 features 

of the OAI dataset, fifty-five were finally selected in this work to predict KOA. As far as the nature of the 

selected features, it was concluded that symptoms, medical imaging outcomes, nutrition, and medical 

history are the most important risk factors contributing considerably to the KOA prediction. However, it 

was also extracted that a combination of heterogeneous features coming from almost all feature categories 

is needed to effectively predict KL progression.  

 

Seven ML algorithms were evaluated for their suitability in implementing the prediction task. Table 7 with 

the summary of all reporting results indicates that LR and SVM were proved to be the best performing 

models. The good performance of SVM could be attributed to the fact that SVM models are particularly 

well suited for classifying small or medium-sized complex datasets (both in terms of data size and 

dimensionality). LR was the second-best performer providing the highest prediction accuracy in datasets A 

and B and the second highest in datasets D and E. The fact that a generalized linear model such as LR 

accomplishes high performances indicates that the power of the proposed methodology lies on the effective 

and robust mechanism of selecting important risk factors and not so much on the complexity of the finally 

employed classifier. Identifying important features from the pool of heterogeneous health-related 

parameters (including anthropometrics, medical history, exams, medical outcomes, etc.) that are available 

nowadays is a key to increase our understanding of the KOA progression and therefore to provide robust 

prediction tools.  
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A few studies have recently addressed the problem of predicting KOA progression from different 

perspectives and employing different data sources. A weighted neighbor distance classifier was presented 

by Ashinsky et al. to classify isolated T2 maps for the progression to symptomatic OA with 75% accuracy. 

Progression to clinical OA was defined by the development of symptoms as quantified by the WOMAC 

questionnaire 3 years after baseline evaluation. MRI images and PCA were employed by Du et al. to predict 

the progression of KOA using four ML techniques. For KL grade prediction, the best performance was 

achieved by ANN with AUC = 0.761 and F-measure = 0.714. An MRI-based ML methodology has been 

also proposed by Marques et al. to prognose tibial cartilage loss via quantification of tibia trabecular bone 

where an odds ratio of 3.9 (95% confidence interval: 2.4–6.5) was achieved. X-ray combined with pain 

scores have been utilized by Halilaj et al. to predict the progression of joint space narrowing (AUC = 0.86 

using data from two visits spanning a year) and pain (AUC = 0.95 using data from a single visit). Similarly, 

another two studies (Tiulpin et al. and Widera et al.) made use of X-ray images along with clinical data to 

predict KOA progression using either CNN or ML approaches achieving less accurate results. The current 

work is the only one employing exclusively clinical non-imaging data and also contributes to the 

identification of important risk factors from a big pool of available features. The proposed methodology 

achieved comparable results with studies predicting KL grades progression demonstrating its uniqueness 

in facilitating the prognosis of KOA progression with a less complicated ML methodology (without the 

need for big imaging data and image-based deep learning networks).  

 

Among the limitations of the current study is the relatively large number of features (55) that were finally 

selected as possible predictors of KOA. The selected features come from almost all feature categories 

highlighting the necessity of adopting a rigorous data collection process to formulate the input feature 

vector that is needed for the ML training. Moreover, the ML models employed are opaque (black boxes) 

and therefore they are insufficient to provide explanations on the decisions (inability to explain how a 

certain output has been drawn). To overcome the aforementioned challenges, it is important for AI 

developers to build transparency into their algorithms and/or enhance the explainability of existing ML or 

DL networks. 

 

 

4.2 Personalised Prediction of Pain progression 

Figure 9 demonstrates the results of various algorithms applied on different combinations of feature subsets 

as they have been ordered by the proposed FS methodology. It was observed that RF achieved the best 

accuracy score, which is 84.3% at the first 25 features, whereas the inclusion of additional features led to a 

progressive decline in the accuracies achieved. Table 9 shows the confusion matrices of the best performing 

model RF. The rest of the ML models achieved inferior results, with SVM producing the second-best results 

with an 80.83% accuracy score. Overall, as we add more features to the aforementioned models, we observe 

that their accuracy scores decrease. 
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Figure 9. Left leg: features and model accuracy scores (%) 

 

Table 9. Random forest: confusion matrix (Left Leg) 

 

 Class 1 Class 2 Class 3 
Per class 

accuracy 

Class 1 28 3 12 65.12% 

Class 2 0 33 0 100% 

Class 3 7 0 38 79.17% 

 

 

For the right leg, Figure 10 shows the results of the machine learning algorithms that we have applied on 

different combinations of feature subsets, created by the FS methodology. The best performing algorithm 

for the right leg is Random Forest with an accuracy score of 84.3%, for 20 features; and as you can see the 

addition of extra features has produced inferior results for our prediction. Table 10 shows the confusion 

matrix of the Random Forest for the best prediction score that it has produced. It is observed that the other 

algorithms have achieved inferior results as observed from Figure 11, similar results are obtained on both 

legs; indicating the repeatability and robustness of the proposed methodology. 
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Figure 10. Right leg: features and model accuracy scores (%) 

 

Table 10. Random forest: confusion matrix (Right Leg). 

 

 Class 1 Class 2 Class 3 
Per class 

accuracy 

Class 1 28 5 7 70% 

Class 2 0 39 0 100% 

Class 3 8 1 32 78% 

 

 

 
Figure 11. The comparison of the performance of Random Forest on both legs in accordance to the number of features. 
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Discussion of results 

Summing up we have used for this work only data from the baseline and not from future visits for our 

prediction. Moreover, we detect the basic trends in pain progression so that we can construct the 3 classes 

of patients. More specifically we have achieved an 84.3% for the prediction of pain on the left leg, and an 

82.5% on the right leg. An important observation here is that these high accuracy scores were achieved by 

using a relatively small subset of features (25 features for the left leg, and 20 for the right leg) that share 

similar characteristics. It was also observed from the D6.3 and D6.5 that the most important features for 

the pain progression prediction are related directly to the pain on each leg respectively. These accuracy 

scores, with the combination of a small number of features, can set the foundation, for the development 

of robust tools capable of identifying pain progression at an early stage therefore improving future KOA 

prevention efforts. Our ultimate goal is to improve the quality of life for people with KOA.  

 

 

4.3 Personalised Prediction of JSN progression 

Evaluation Methodology 

The proportion of 70–30% was chosen for splitting the data set to training set and testing set, respectively, 

with normalization upon the features. The model’s evaluation was performed on the medical dataset. Hyper 

parameter tuning was applied to most of the aforementioned models with grid search and 3-fold cross-

validation (Deliverable 6.5).  

 

Post-Hoc Interpretation/Explainability 

In this work, the SHapley Additive exPlanations (SHAP) were employed to rank features in terms of their 

impact on the final ML outputs. SHAP builds a mini explainer model for a single row-prediction pair that 

explains how this prediction was achieved. It is based on optimal shapley values from coalitional game 

theory that indicate how to fairly distribute the impact on the model’s prediction among the features. 

 

Classification Results  

Table 11 shows the maximum, minimum, and mean accuracy along with the standard deviation achieved 

by the models over the test set for increasing the number of features for the left leg. For the left leg, the 

LR model performed better than the others with a maximum accuracy of around 77.7% for 165 features 

(Table 11). However, NNs and SVM had a comparative performance with a 75.8% and 76.4% maximum 

accuracy, respectively. To identify the exact number of features where the prediction accuracy is maximized, 

the two best performing models (LR and SVMs) were tested in the range of 155 and 175 features with a 

step of 1 with the results shown in Figure 12. The LR model performed best (≅ 78.3%) at 164 features. 

For this performance the following hyperparameters were used: Maximum number of iterations 100, 

intercept scale 1, L2 penalty, Newton-cg solver with reuse of the previous solution as initial one, and 

tolerance 0.0001. 

 

Table 11. Maximum, minimum, and mean accuracy of prediction models over the tested set for the left leg. The best 

results are indicated in bold. 

Prediction Model 
Maximum 

Accuracy 
Minimum Accuracy Mean Accuracy Standard Deviation 

Gradient Boosting 0.72611 0.56688 0.66707 0.02622 

Logistic Regression 0.77707 0.60510 0.71540 0.03353 

NNs (Neural 

Networks) 
0.75796 0.62420 0.68234 0.02933 
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Naïve Bayes Gaussian 0.68153 0.59236 0.62794 0.02301 

Random Forest 0.70064 0.61783 0.65989 0.01616 

SVM 0.76433 0.63057 0.70377 0.02783 

 

 

Figure 12. The accuracy of LR (logistic regression) and SVM at [155, 175] features over the test set for the left leg. 

Results are shown with a step size of 1 (one feature added at each step). 

 

For the right leg a similar approach was adopted. Table 12 shows the maximum, minimum, and mean 

accuracy with the standard deviation achieved by the models over the test set for increasing the number 

of features for the right leg. 

 

The SVM model presented the best performance by achieving the maximum accuracy (≅ 77.7%) for 90 

features (Table 12). However, the LR and NNs models accomplished an adequate performance (Figure 13). 

Specifically, the LR model achieved a higher mean accuracy (≅ 70.7% ± 0.036) with a lower standard 

deviation compared to the results of the model (≅ 68.6% ± 0.039). To this end, these two models were 

re-evaluated for features in the neighborhoods, 𝒰𝐿𝑅(185,10) and 𝒰𝑆𝑉𝑀(90,5) with a step of 1 feature at 

a time. LR achieved its best performance (≅ 77.1% accuracy) at 185 and 188 features while the SVM 

model reached its maximum accuracy of 77.7% with 88 and 90 features (Figure 13). The SVM model’s 

hyperparameters that achieved the best performance are the following: A linear kernel, regularization 

parameter at 0.1, tolerance at 0.001, and cache size at 200. 

Table 12. Maximum, minimum, and mean accuracy of prediction models over the tested set for the right leg. The best 

results are indicated in bold. 

Prediction Model 
Maximum 

Accuracy 

Minimum 

Accuracy 
Mean Accuracy Standard Deviation 

Gradient Boosting 0.72611 0.61783 0.67172 0.02445 

Logistic Regression 0.77070 0.63057 0.70691 0.03560 

NNs 0.76433 0.58599 0.69983 0.03858 

Naïve Bayes Gaussian 0.72611 0.50955 0.62774 0.03926 

Random Forest 0.71975 0.61783 0.67577 0.02217 

SVM 0.77707 0.60510 0.68598 0.03929 
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(a) 

 
(b) 

Figure 13. The performance evaluation of (a) LR in the range of 175–195 features and (b) SVM in the range of 85–95 

features. Results are shown with a step size of 1 (one feature added at each step). 

 

Table 13 shows the maximum, minimum, and mean accuracy achieved among with the standard deviation by 

the models over the test set for  various number of features for both right and left legs combined. The results 

show that the LR model performed better compared to the other models by reaching the maximum accuracy 

(≅ 83.3%) for 30 features, as illustrated in Table 13. Nevertheless, SVM and RF showed a comparative 

performance. The aforementioned three models are re-evaluated in order to find the number of features that 

maximize the accuracy. Hence, the models are tested in the neighborhood where all three models achieved 

their best performance 𝒰(30,5). From a more detailed analysis, LR remained the predictive model with the 

best performance (≅ 83.3%) for 29 features (Figure 14). 

 

Overall, LR presented a stable performance (Figure 15, 77% ± 0.04) reaching the maximum accuracy at 

29 features (83.3%). The hyperparameters of the LR model with the best performance were identical to 

the ones presented for the case of the first strategy. Α generalized linear model such as LR has accomplished 

the best performance in our study, indicating that the power of the proposed methodology is not so much 

dependent on the complexity of the learning model but lies on the effective and robust mechanism of 

selecting important risk factors. Identifying robust predictive risk factors from a high dimensional feature 

space (such as the OAI dataset) is crucial since it enhances our understanding of KOA progression and 

therefore contributes to the development of robust prediction tools. 

 

Table 13. Maximum, minimum, and mean accuracy of prediction models over the tested set for the left and right legs 

combined. The best results are indicated with bold. 

Prediction Model Maximum Accuracy Minimum Accuracy Mean Accuracy Standard Deviation 

Gradient Boosting 0.81746 0.69841 0.74591 0.02449 

Logistic Regression 0.83333 0.65873 0.76503 0.03725 

NNs 0.79365 0.64286 0.73870 0.03470 

Naïve Bayes Gaussian 0.76984 0.50000 0.63300 0.06331 

Random Forest 0.79365 0.61111 0.70755 0.05645 

SVM 0.82540 0.64286 0.74928 0.04223 
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Figure 14. The accuracy of LR, RF (random forest), and SVM from 25 to 35 features over the test set for left and right 

legs combined. Results are shown with a step size of 1 (one feature added at each step). 

 

Figure 15. The box plot of the prediction models based on their performance for the right and left legs combined. 

The strategy of this work takes into account information from both legs and therefore leads to a well-

defined data classification problem in which the non-progressors do not experience any JSN progression 

in any of their legs, whereas the progressors’ class incudes data from patients that experience JSN 

progression in at least one of their legs or both. This data problem proved to be more effectively handled 

by the proposed methodology with an 83.33% prediction accuracy at the first 29 features. 
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Figure 16. The distribution of the features’ impact on LR model output for the OAI (osteoarthritis initiative) dataset with 

29 features across all instances. 

 

Figure 17. The average impact magnitude of 29 features on the LR model output for the OAI dataset for all instances. 

Post-Hoc Explainability Results 

To explain the impact of the selected features on the outcomes of the employed best prediction model, the 

SHAP method was used. SHAP was applied to the LR model which was trained on the selected 29 features 



OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D9.3                                                                                                                               28     
 

that come from both legs. In Figure 16, the features are sorted by the sum of SHAP value magnitudes over 

all samples. The SHAP values are used to indicate the distribution of each feature’s impact on the model’s 

output. Specifically, the feature value is represented by color, with the red color corresponding to a high 

impact while the blue to a low impact. For instance, a high P01SVRKJSL value (evidence of knee lateral 

joint space narrowing) lowers the predicted status of the subjects. The features P01SVLKJSL, V00FFQ19, 

V00WOMSTFR, V00LFEFFB, V00RKLTTPN, P01OAGRDR, P01SVRKOST, V00KPRKN1, 

V00WSRKN2, and V00KSXRKN5 present similar behavior. On the contrary, V00FFQ16 (how often the 

patient ate dishes with rice in the past 12 months) has a positive effect on the prediction outcome. Similar 

behavior was identified for the features V00PCTSMAL, V00KPRKN3, P01KPMED, V00FFQ69, 

V00lemaxf, V00lfTHPL, V00DTB12, and V00RKALNMT. Figure 17 illustrates the mean absolute value 

of SHAP values for each feature as a standard bar plot, which depicts the SHAP global feature importance. 

We observe that each feature has the same impact on both classes. Furthermore, the most important 

features that affected the prediction output were the P01SVRKJSL, P01SVLKJSL, and V00PCTSMAL. 

 

 

4.4 Increasing generalization using an evolutionary Machine Learning approach   

Validation 

To evaluate the predictive capacity of the selected feature subset, a repeated cross-validation process was 

adopted using the aforementioned classifiers. Specifically, the validation approach proceeds with the 

following steps 

 Step 1. Random undersampling is applied on the majority class, and the retained samples along 

with those from the minority class form a balanced binary dataset. 

 Step 2. A classifier is built on the balanced binary dataset and its accuracy is calculated using 10-

fold cross-validation (10FCV). 

 Step 3. Steps 1 and 2 are repeated 10 times, each one using a different randomly generated balanced 

dataset. 

 Step 4. The final performance is calculated by averaging the obtained 10FCV classification 

accuracies. The resulting final performance will be referred to here as mean 10FCV. 

By adopting this repeated validation approach, we guarantee that the selected features are not only suitable 

for a specific data sample but that they generalize well over the whole dataset. The calculated mean 10FCV 

performance aggregates the accuracies from 100 training runs (10 repetitions of 10FCV) on different 

randomly created data samples, forming a reliable measure for estimating the predictive capacity of the 

selected features. 

Explainability 

To further assess the impact of the selected features on the classification outcome, SHapley Additive 

exPlanations (SHAP) were considered. SHAP is a game-theoretic approach that explains the output of any 

machine learning model and achieves the connection of the optimal credit allocation with local explanations 

using the classic Shapley values from game theory that come with desirable properties. In this study, Kernel 

SHAP is used, which is a specially weighted local linear regression to estimate SHAP values for any model 

(e.g., SVM in a two-class classification problem). The optimization of loss function L in Kernel SHAP is 

described below (in Equation), where g is the explanation linear model that is trained on training data Z, 

𝑓(: ) is the original prediction function to be explained and 𝑧′ is a vector of 1s and 0s called a coalition. 

Here, 1s indicate the presence of the corresponding feature, while 0 indicates its absence. ℎ𝑥(𝑧′) maps a 

feature coalition to a feature set on which the model can be evaluated, whereas 𝜋𝑥(𝑧′) is the SHAP kernel. 
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(𝑓, 𝑔, 𝜋𝑥) = ∑ [𝑓(ℎ𝑥(𝑧′)) − 𝑔(𝑧′)]
2

𝜋𝑥(𝑧′)

𝑧′∈𝛧

 
(

1

) 

 

 

Results 

In this section, we demonstrate the efficiency of the proposed feature selection algorithm in comparison 

with other well-known FS techniques. The most significant risk factors, as selected by the proposed FS 

methodology, are also presented, whereas their impact on the classification result is discussed employing 

SHAP. 

 

Table 14 also shows the best accuracies achieved by each technique and the number of features for which 

the best accuracy was achieved. GenWrapper achieved its best accuracy at a relatively small number of 

features (35), whereas the rest had inferior performances and, in most of the cases, at a higher number of 

features. The classical wrapper FS was the only one that selected slightly fewer features (31). A statistical 

comparison was finally conducted, verifying that the accuracies obtained by the proposed GenWrapper 

were significantly different (higher) to the ones of all the competing FS algorithms (p < 0.001). 

 

Table 14. Best performance (mean 10FCV) was achieved by all competing FS techniques employing SVM along with the 

number of selected features in which this accuracy was accomplished. 

Approach  
Best Accuracy  

(Mean 10FCV) 

Number of 

Features 

Statistical  

Comparison * 

Execution 

Time (sec) ** 

GenWrapper 71.25 35 - 311.6 

Wrapper 69.79 31 p < 0.001 10.2 

CFS 61.97 69 p < 0.001 0.1 

ILFS 63.63 82 p < 0.001 0.5 

Inf-FS 63.32 35 p < 0.001 0.1 

Lasso 64.41 94 p < 0.001 21.2 

Mrmr 67.29 36 p < 0.001 2.3 

Hybrid 67.85 41 p < 0.001 15.5 

PCA 65.11 29 p < 0.001 <0.1 
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* Statistical comparison with the proposed GenWrapper. ** All the algorithms were executed on an Intel 

Core i7-7500 processor, 2.70 GHz CPU (16 GB RAM) using MATLAB 2020b. 

The last part of the conducted comparative analysis focuses on a different performance metric—that is, the 

consistency of the obtained accuracies during the proposed repetitive validation process. As explained in 

the previous sections, the predictive capacity of the selected features is validated multiple times (10). In 

each of the ten repetitions, 10FCV is employed on a different, randomly selected balanced data sample. A 

feature subset could be considered robust when it consistently leads to high accuracies over the ten 

repetitions. Figure 18 is a bar graph that visualizes (i) the mean 10FCV accuracies, (ii) the standard deviation 

of the 10FCV accuracies, (iii) the range ([min, max]) of the 10FCV accuracies, and (iv) any outliers that 

deviate from the distribution of the 10FCV accuracies. GenWrapper was the most accurate approach 

(71.25%) and, at the same time, it proved to be the most consistent FS technique, with the great majority 

of obtained 10FCV accuracies being higher than 70%. The classical wrapper FS was also consistent over 

the ten repetitions but it was considerably less effective than the proposed GenWrapper. It should be noted 

that the hybrid FS approach achieved accuracies up to 72.5%; however, it does not generalize well given 

that it leads to a quite enlarged min–max range as well as an increased standard deviation, with the minimum 

accuracy being less than 60%. Mrmr has led to both moderate mean accuracy and moderate consistency 

(ranging between 66% and 70%) over the repetitions of the employed validation process. The rest of the 

competing FS approaches led to much lower 10FCV accuracies that ranged between 58% and 68%. 

  

Figure 18. Bar graph comparison for the best models (SVMs trained on the optimum number of selected features per case). 

Red lines correspond to the mean 10FCV, blue boxes visualize the standard deviation of the obtained accuracies, dashed black 

lines show the min–max range and the red crosses depict outliers (if any). 

 

Explainability Results 

Figure 19a illustrates the features’ impact on the output of the final model (SVM) on the OAI dataset. It 

sorts features by the sum of SHAP value magnitudes over all samples and uses SHAP values to show the 

contribution of each feature (positive or negative) on the model’s output. The color represents the feature 

value (blue—low; red—high). This reveals, for example, that a high P01BMI (body mass index of the 

participants) increases the predicted status of the participants. Similar to BMI, the features P01SVLKOST, 

V00SUPCA, V00CHNFQCV, V00WOMSTFR, V00FFQSZ13, V00KQOL4, V00rkdefcv, KPLKN1, and 

V00PA130CV have a positive effect on the prediction outcome (their increase drives the output to 

increase), whereas the rest have the opposite effect. Figure 19b demonstrates the mean absolute value of 
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the SHAP values which represents the SHAP global feature importance. It should be noted that the features 

P01SVLKOST, BMI, V00SUPCA, and V00EDCV were the most important variables that significantly 

affected the prediction output (Appendix A). 

 

 

   

 

 

 

 

 

 

 

 

 

 

(a)  (b) 

 

Figure 19. This figure depicts: (a) the SHAP summary plot and; (b) the SHAP feature importance for the 

SVM trained on the features selected by the proposed GenWrapper. 

Discussion of results  

During our work, we utilized multimodal data and we managed to identify the variables that mainly 

contributed to the predictive ability of our models. Important predictive risk factors selected by our models 

included assessments of pain and function, qualitative assessments of X-rays, assessments of behavioral 

characteristics, medical history, and nutrition from the Center for Epidemiologic Studies Depression Scale 

(CES-D) and Block Brief 2000 questionnaires. The strongest indicator variables are reporting on knee 

baseline radiographic OA status (P01SVLKOST), anthropometric characteristics (P01BMI), and on 

nutritional (V00SUPCA) and behavioral habits (V00KQOL4). Previous studies have also reported similar 

key predicted variables for KOA progression. Our findings suggest that early functional, behavioral and 

nutritional interventions should be encouraged and implemented for the prevention or slowing down of 

KOA progression. 

Genetic algorithms might be costly in computational terms since the evaluation of each individual requires 

the training of a model. Due to its stochastic nature, the proposed FS takes a longer time to converge, and 

this could be considered a limitation. However, the identification of risk factors for KOA progression is, 

in principle, an offline approach, and therefore, its current execution time (~5 min) is not prohibitive. In 

the current study, time execution is not considered as crucial as the predictive capability of the finally 

selected features that can be used to enhance our understanding of whether a patient is at increased risk of 

progressive KOA. GenWrapper improves the current state of the art by identifying risk factors that are 

more accurate compared to the ones selected by eight well-known FS algorithms (by at least 3.4%) and, 

most importantly, more robust in terms of their performance on the entire population of subjects (as it has 

been validated with an extensive validation mechanism that involved 100 training runs on different data 

samples). This stated improvement could (i) allow preventive actions to be planned and implemented and 
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(ii) enable more personalized treatment pathways and interventions for treatment, targeting specific risk 

factors. From a different perspective, being able to identify non-progressors could also prevent over-

investigations and over-treatment. 

 

4.5 Diagnosis of KOA based on KL grade 

Validation 

A 70%-30% random data split was applied to generate the training and testing subsets, respectively. 

Learning of the ML was performed on the stratified version of the training sets and the final performance 

was estimated on the testing sets. 

Interpretation / Explainability 

SHapley Additive exPlanations (SHAP) is a game-theoretic approach to explain the output of any ML 

model (e.g., XGBoost, LightGBM, CatBoost, scikit-learn, and pyspark tree models). It connects optimal 

credit allocation with local explanations using the classic Shapley values from game theory and their related 

extensions. In this work, we employed SHAP to rank features in terms of their impact on the final ML 

outputs and to build a mini explainer model for a single row-prediction pair that explains how this 

prediction was achieved. 

Results 

 

Table 15 summarizes the results of Logistic Regression, XGboost, SVM, Random Forest, KNN, Naïve 

Bayes, and DT on the 2-class problem. The best overall performance on the 2-class problem (77.71%) was 

achieved by the Logistic Regression on the group of the forty selected (40) risk factors with L2 penalty and 

C = 1.0. The second highest accuracy was received for XGboost (77.31%), whereas lower accuracies were 

obtained by the rest of the models. 

 

Table 15. Best testing accuracies achieved for each model along with the selected number of features and the hyperparameters 

of the ML model. 

 

Classifiers Accuracy Num. of Features Selected hyperparameters 

Logistic 

Regression 
77.71% 40 Penalty: l2, C: 1.0 

XGboost 77.31% 40 
gamma: 0, max_depth: 2, 

min_child_weight: 8 

SVM 76.93% 70 C: 8, kernel: linear 

Random Forest 76.50% 35 

criterion: entropy, 

min_samples_leaf: 2, 

min_samples_split: 6, 

n_estimators: 30 

KNN 73.58% 10 
leaf_size: 1, n_jobs: -1, 

n_neighbors: 15 

Naïve Bayes 72.37% 45 GaussianNB 
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Decision Tree 72.63% 5 

max_features: auto, 

min_samples_leaf: 8, 

min_samples_split: 2 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Features’ impact on Logistic Regression (40F) model output for the OAI dataset. The left panel, shows the 

distribution of the impact of a feature value on the model output across all instances.  The right panel, shows the average 

impact magnitude for all instances. 

Figure 20 illustrates the features’ impact on the output of the final model (Logistic Regression 40F) on the 

OAI dataset. For the certain subset, the left panel sorts feature by the sum of SHAP value magnitudes over 

all samples and uses SHAP values to show the distribution of the impacts each feature has on the model 

output. The color represents the feature value (red for high, blue for low). This reveals for example that a 

high V00AGE (age of the participants) lowers the predicted status of the participants. Furthermore, from 

the right panel, we take the mean absolute value of the SHAP values for each feature to get a standard bar 

plot. In addition, it should be noted that in both panels the features are ordered by their total impact. 

 

Discussion of results 

It was also observed that there is a partial agreement between the order of the features’ importance as 

selected by the proposed FS methodology and the features’ impact on the prediction outcomes. The most 

significant difference between the outcomes of the FS and explainability analysis was observed in the 

variables VOOAGE, P01KSX, and P01BMI that were not selected on the first 10 features but were proven 

to contribute significantly shaping the KOA predictions (Figure 20). The likely reason for the 

aforementioned observation is that the FS and the explainability of the ML models perform different tasks. 

Specifically, FS selects a subset of relevant features (variables, predictors) for use in model construction and 

to improve prediction performance. On the contrary, the SHAP assigns on each feature an important value 

for a particular prediction and has the main task to explain the output of any ML model. For this reason, 

there is this mismatch in the order of importance of the features that resulted from FS and the use of 

SHAP. According to SHAP, these three variables contribute to the interpretation of predictions, which is 

in line with the existing literature. Age is an important factor in the occurrence of KOA, as evidenced by 

Moustakidis et al. in developing a model for diagnosing of KOA. Also, the presence of knee pain is a factor 

that leads to the diagnosis of a person with KOA. In addition, obesity (high BMI) is suggested to be a high-

risk factor in the development of KOA due to the increased mechanical loading that is applied on the knee 
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joints. Furthermore, observing the processes for individual predictions, it was concluded that each group 

of subjects was reinforced by different features. This finding further indicates the need of applying 

explainability analysis algorithms on the generated ML models in order to enhance our understanding of 

them and identify the key elements that contribute and shape their predictions. 

 

5. Machine Learning and Deep Learning Diagnosis models with focus on accuracy and fairness 

Osteoarthritis dataset 

In this research work, the dataset was selected from the osteoarthritis initiative (OAI) database designed to 

identify risk factors associated with the incidence and progression of knee OA. Osteoarthritis initiative 

study (https://oai.epi-ucsf.org/datarelease/) was launched in 2002, enrolling people aged 45–79 years, with 

symptomatic knee OA or being at high risk of developing KOA in at least one knee in four US medical 

centres. In total, 4796 participants were recruited and followed over 8 years with a follow-up rate of more 

than 90% over the first 48 months. The current work only includes self-reported data related to joint 

symptoms, disability, function and general health from all individuals with or without KOA from the 

baseline visit. 

 

Dataset characteristics 

The selected dataset comprises 141 risk factors from 4796 participants. Next, we divide this dataset into six 

subgroups of participants. These subgroups are (i) participants older than 70 years, (ii) participants under 

70 years, (iii) male participants, (iv) female participants, (v) non-obese, and (vi) obese participants. 

Table 16. Dataset characteristics 

 

F
ea

tu
re

 c
ha

ra
ct

er
is

ti
cs

 

Category 
Num. of 

features 

Feature 

category 
Description 

 

Temporal 

occurrence of 

symptoms  

68 past week 
Any type of symptoms over the past 

7 days  

 
10 past month 

Any type of symptoms over the past 

30 days 

 
13 past year 

Any type of symptoms over the past 

12 months  

 

Type of 

symptoms  

64 Pain 

Features related to pain in various 

activities for both knees, hips, and 

joints in all time intervals 

 
27 Stiffness  

Features related to stiffness in all the 

time intervals 

 

37 Knee difficulty 

Knee difficulty on either right or left 

leg on various activities in all time 

intervals 

 

12 
Other 

symptoms  

Symptoms such as swelling, grinding 

sensation, knee catch or hang up in all 

time intervals 

https://oai.epi-ucsf.org/datarelease/
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Quality of life 15 Quality of life 

Features related to health, emotional 

problems, lifestyle, psychology  

 

Hybrid metrics  

8 WOMAC 

Indexes which consist of a score of 

questions about pain, symptoms, and 

quality of life for both  knees 

 

5 KOOS 

Indexes which consist of a score of 

questions about pain, stiffness, and 

disability for both knees 

      

 

S
am

pl
e 

ch
ar

ac
te

ri
st

ic
s 

                  Groups 
Total number   

of samples 

Samples in 

progression class 

Samples in 

incidence 

class 

 
Weight  

Obese 1761 681 1080 

 Non-obese 2909 706 2203 

 
Age 

Over 70 1119 329 790 

 Under 70 3559 1063 2496 

 
Gender 

Males 1945 597 1348 

 Females 2729 793 1936 

 

The 68 out of 141 features describe any type of symptoms over the past 7 days, such as any back pain, 

how often bothered by back pain, limited activities due to back pain, the number of days stayed in bed 

due to back pain, etc. Ten (10) out of 141 features describe any type of the same symptoms over the 

past 30 days; 13 out of 141 features, any type of the same symptoms over the past 12 months. Next, 64 

out of 141 features are related to pain in various activities for both knees, hips, and joints in all time 

intervals, 27 out of 141 features are related to stiffness in all the time intervals, 37 out of 141 features 

are related to the knee difficulty on either right or left leg on various activities in all time intervals, 12 

out of 141 are symptoms such as swelling, grinding sensation, knee catch or hang up in all time intervals, 

15 out of 141 features are related to health, emotional problems, lifestyle, psychology, 8 are indexes 

which consist of a score of questions about pain, symptoms, and quality of life for both of knees, and 5 

are indexes which consist of a score of questions about pain, stiffness, and disability for both knees. 

The 4796 samples of the dataset were divided into two categories as follows:   

 Class 1: Incidence: This class comprises 3284 participants who do not have symptomatic knee 

OA, but who do meet the risk factor eligibility criteria for their age group. 

 Class 2: Progression: This class involves 1390 participants with frequent knee symptoms, which 

are defined as “pain, aching or stiffness in or around the knee on most days”.   

     Control samples or samples with missing data and outliers were excluded from the datasets of the 

current study.  

To evaluate the predictive performance of the proposed methodology on different populations, the 

dataset was organized into the following subgroups with respect to Body Mass Index (BMI), age, and 

gender: 

1) Obese subgroup consisting of subjects with BMI higher or equal to 30 
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2) non-obese subgroup with BMI<30 

3) over 70 subgroup (aging) consisting of subjects that are more than 70 years old 

4) under 70 subgroup with subjects younger than 70 years 

5) male subgroup, and the 

6) female subgroup.  

 

The dataset characteristics (including a description of features and the number of samples per subgroup 

and per class) are presented in Table 16.  

 

Methodology 

The proposed DNN-based method for KOA classification includes three processing steps: data pre-

processing to handle missing values and normalise the collected clinical data, a learning process for DNN 

training, and evaluation of the classification results. The proposed methodology is presented below. 

Preprocessing 

For handling missing values, mean imputation was performed. Specifically, for numerical features, missing 

values were replaced by the mean feature value. In the case of categorical features, the most frequent 

category was used to replace NaNs. Since activation functions of DNNs do not generally map into the full 

spectrum of real numbers, we first standardized our data to be drawn from N(0; 1). Normalization also 

allowed us to compute more precise errors in this standardized space, rather than in the raw feature space.  

Data resampling was employed to cope with the class imbalance problem. Specifically, a variant of SMOTE 

(SMOTE-SVM) was utilized providing borderline over-sampling especially designed for imbalanced data 

classification problems. In SMOTE-SVM, a borderline area is approximated by the support vectors 

obtained after training a standard SVMs classifier on the original training set. New instances are then 

randomly created along the lines joining each minority class support vector with a number of its nearest 

neighbors using interpolation.  

 

Dense Neural Networks 

A DNN is actually a fully connected ANN.  Concerning the learning process, DNNs use a cascade of 

multiple layers of nonlinear processing units for feature extraction and transformation as well as can learn 

in supervised (e.g., classification) and/or unsupervised (e.g., pattern analysis) manners. A DNN consists of 

a series of fully connected layers. A fully connected layer is a function from ℛ𝑚 to ℛ𝑛 . 

Let  𝑥 ∈ ℛ𝑚 represent the input to a fully connected layer. Let 𝑦𝑗 ∈ ℛ be the j-th output from the fully 

connected layer. Then 𝑦𝑗 is computed as follows: 𝑦𝑗 = 𝑔(∑ 𝑤𝑖𝑗𝑥𝑖𝑖=1,..𝑚 ) where 𝑔 is a predefined function 

known as the activation function and 𝑤𝑖𝑗 are learnable parameters in the network. This transformation is 

iterated from layer to layer until we reach the final layer where a Softmax function is applied. For this work, 

we used H2O that is an open-source library widely used for constructing and learning DNNs in prediction 

and classification tasks. The design space of a DNN is practically infinite severely depending on the number 

of layers of the DNN and the number of neurons in each of those layers.  

 

Due to the limited available computational power, the size of a DNN needs to be adjusted according to 

each problem’s characteristics. In this study, we used fully connected, dense neural layers where the output 

of one layer serves as the input for the next layer. We investigated several different DNN architectures with 

varying: (i) number of hidden layers, (ii) number of nodes per hidden layer. The rectified linear activation 

was selected given that it has demonstrated high performance on a variety of recognition tasks and is a 

more biologically accurate model of neuron activations. The final neural layer reduces the dimensionality 
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to 2 nodes using ‘Softmax’ as an activation function. The adaptive learning rate was employed with 

ADADELTA that automatically combines the benefits of learning rate annealing and momentum training 

to avoid slow convergence. Weight initialisation was performed by using a uniform distribution. Early 

stopping was implemented based on the convergence of the logloss metric. 

 

Validation 

The performance of the proposed methodology was validated in terms of both accuracy and fairness. 

Accuracy was estimated using a 70% (training) - 30% (testing) split of the dataset. The proposed 

methodology was trained and optimised using the training set and the final predictive performance was 

estimated as the accuracy on the testing set. Fairness was calculated by employing the metrics that are 

presented below.  

 

Definition 1 (Demographic Parity) is also known as statistical parity. A predictor satisfies demographic parity 

if the likelihood of a positive outcome is the same regardless of whether the person is in the protected (e.g., 

female) group. 

 

𝐷𝑃 (%) = 100 − 𝑠𝑡𝑑(𝐴𝐶𝑈𝑖), ∀ 𝑖 = 1 … .6          (1) 

 

where 𝐴𝐶𝑈𝑖 denotes the overall accuracy of a predictor on the samples of a subgroup i. DP receives its 

maximum value (100) when all subgroup accuracies are equal.  

 

Definition 2 (Balanced Equalized Odds) All groups (protected and unprotected) should have equal rates for 

true positives (TP) and true negatives (TN). This fairness definition combines two criteria: (i) equalized 

odds between groups (e.g.  𝑇𝑃𝑚𝑎𝑙𝑒𝑠 = 𝑇𝑃𝑓𝑒𝑚𝑎𝑙𝑒𝑠  and 𝑇𝑁𝑚𝑎𝑙𝑒𝑠 = 𝑇𝑁𝑓𝑒𝑚𝑎𝑙𝑒𝑠) and (ii) equalized odds 

between classes (e.g.  𝑇𝑃𝑚𝑎𝑙𝑒𝑠 = 𝑇𝑁𝑚𝑎𝑙𝑒𝑠 and 𝑇𝑃𝑓𝑒𝑚𝑎𝑙𝑒𝑠 = 𝑇𝑁𝑓𝑒𝑚𝑎𝑙𝑒𝑠). The proposed Balanced 

Equalized Odds (BEO) criterion is defined as follows: 

     

𝐵𝐸𝑂 (%) = 100 − 𝑠𝑡𝑑([𝑇𝑃1, 𝑇𝑁1, … , 𝑇𝑃𝐾 , 𝑇𝑁𝐾])     (2) 

 

where K the number of subgroups (K=6 in our work). BEO receives 100 in the ideal case in which 𝑇𝑃𝑖 = 

𝑇𝑁𝑖 , ∀ 𝑖. 

 

Validation using benchmark machine learning algorithms 

To effectively use the developed algorithm for classifying OA categories, it needs to be assured that the 

algorithm achieves its goal, with advantages compared with other benchmark machine learning algorithms. 

By comparing the results achieved by the developed algorithm with those presented by other algorithms, 

one can assess the viability, applicability, and quality of the classification algorithm. The methods selected 

for comparison purposes are decision trees, SVMs, kNN (with k=1 and 5), Adaboost, and Random Forest 

that are typically recommended for classification problems. 

 

Results and discussion  

 

Accuracy performance on the full dataset 

This section reports the results of the conducted experiments with different DNN architectures on the full 

dataset. The proposed DNN models were applied on the 2-class problem and the obtained classification 

accuracies along with associated confusion matrixes and class accuracies are given in Table 17 with the 

without data resampling, respectively. 
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Best accuracies in the majority of the DNN architectures were received without the application of data 

resampling, whereas the best overall performance (79.6%) was achieved by the DNN model with 1 hidden 

layer and 50 nodes per layer (see Table 16).   In regards to the effectiveness of the SMOTE-SVM resampling 

mechanism, the following remarks can be extracted:  

 

The reported confusion matrixes (gray area in Table 17) reveal the inability of the proposed methodology 

(without data resampling) to recognize participants in the progression class that receives moderate class 

accuracies (from 62.63% to 69.19%).  The application of data resampling on the training sets leads to 

increased class accuracies for the progression class (from 68.18 to 76.52%) and consequently more balanced 

confusion matrixes (Table 17a). Nevertheless, this increase in the class accuracies comes with a small 

reduction in the overall accuracies of the models in Table 17b (best accuracy observed: 78.81%). 

 

Table 17. a) Overall testing performance of the proposed DNN methodology for different network architectures and b) 

Overall testing performance of the proposed DNN methodology with SMOTE for different network architectures. 

 

Hidden 

layers 

Num. of 

nodes 
 progression Incidence Class 

accuracy 

Overall 

accuracy 

1 50 
progression 274 122 69.19 

79.60 
Incidence 163 838 83.72 

1 100 
progression 273 123 68.94 

79.24 
Incidence 167 834 83.32 

2 50 
progression 273 123 68.94 

77.81 
Incidence 187 814 81.32 

2 100 
progression 248 148 62.63 

78.10 
Incidence 158 843 84.22 

3 50 
progression 274 122 69.19 

77.88 
Incidence 187 814 81.32 

3 100 progression 267 129 67.42 79.03 
Incidence 164 837 83.62 

 

a) 

Hidden 

layers 

Num. of 

nodes 
 progression Incidence Class 

accuracy 

Overall 

accuracy 

1 50 
progression 303 93 76.52  

77.95 Incidence 215 786 78.52 

1 100 
progression 281 115 70.96  

77.59 Incidence 198 803 80.22 

2 50 
progression 270 126 68.18  

78.10 Incidence 180 821 82.02 

2 100 
progression 283 113 71.46  

77.88 Incidence 196 805 80.42 

3 50 
progression 290 106 73.23  

78.81 Incidence 190 811 81.02 

progression 288 108 72.73 
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3 100 Incidence 195 806 80.52  

78.31 

 

 

                                                 b) 

 

(i) Overall, SMOTE-SVM had a positive effect on the classification of the smaller class (4.47% 

average increase) and a slightly negative effect on the overall accuracy (0.79% reduction). 

 

Table 18. Best performance achieved on subgroups. 

 

 
subgroup Hidden 

layers 

Num. of 

nodes 
 progression Incidence Class 

accuracy 

Overall 

accuracy 

Males 2 50 
progression 74 342 82.21 

78.58 
Incidence 108 55 66.26 

Females  3 50 
progression 178 59 75.11  

78.68 Incidence 116 468 80.14 

Over 70 2 50 
progression 77 33 70.00  

82.74 Incidence 25 201 88.94 

Under 70 1 100 
progression 180 119 60.20  

78.34 Incidence 113 659 85.36 

Obese 1 100 
progression 154 58 72.64  

79.21 Incidence 52 265 83.60 

Non - 

obese 
3 50 

progression 127 84 60.19  

81.82 Incidence 76 593 88.64 
 

 

 

 
Figure 21. Best class- and overall accuracy obtained on subgroups 

 

Results on subgroups 

Next, the proposed DNN architectures were trained on data from six subgroups of participants: (i) 

participants older than 70 years, (ii) participants under 70 years, (iii) male participants, (iv) female 

participants, (v) non-obese and (vi) obese participants. Table 18 cites classification accuracies obtained by 

the proposed methodology (without data resampling) trained on the aforementioned data subgroups with 

the full feature set. Significant differences were observed between these subgroups and the entire dataset. 

In the following subsections, the results of each subgroup are analyzed and explained. 
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Results from gender effect in the diagnosis 

Overall accuracies of ~78.6% and a negligible difference of approximately 0.1% were received for the male 

and female subgroups suggesting that gender is not a factor that could considerably differentiate the 

diagnosis capacity of the DNN models. 

With regards to class accuracies, both progression and incidence classes were classified with accuracies 

higher than 75% in females, whereas a significant difference between the two classes was observed in the 

class accuracies on the male subgroup (82.21% and 66.26% for progression and incidence classes, 

respectively). 

Results from age subgroups 

 

Table 19. Performance achieved by the proposed DNN methodology with and without SMOTE. 

 

 
Best accuracy on Full set  

(DNN architecture: 1 hidden layer of 50 nodes) 

 Best accuracy on full Set with 

SMOTE  

(DNN architecture: 3 hidden 

layers of 50 nodes) 

   

  Progres

sion  

Incide

nce  

Class 

accuracy 

Overa

ll 

subgr

oup 

accur

acy  

 Progres

sion  

Incide

nce  

Class 

accur

acy 

Overa

ll 

subgr

oup 

accur

acy 

   

obese progres

sion 

133 52 71.89   139 46 75.14     
 Inciden

ce 

51 271 84.16 79.68  57 265 82.30 79.68    

non-

obese 

progres

sion 

141 70 66.82   151 60 71.56     
 Inciden

ce 

112 567 83.51 79.55  133 546 80.41 78.31    

over70 progres

sion 

61 29 67.78   66 24 73.33     
 Inciden

ce 

26 172 86.87 80.90  25 173 87.37 82.99    

under

70 

progres

sion 

213 93 69.61   224 82 73.20     
 Inciden

ce 

137 666 82.94 79.26  165 638 79.45 77.73    

male progres

sion 

127 41 75.60   126 42 75.00     
 Inciden

ce 

60 349 85.33 82.50  72 337 82.40 80.24    

female progres

sion 

147 81 64.47   164 64 71.93     
 Inciden

ce 

103 489 82.60 77.56  118 474 80.07 77.80    

 

 

 
Figure 22. Fairness with respect to the accuracy with and without SMOTE for the proposed DNN methodology: a) 

BEO versus accuracy and b) DP versus accuracy. 
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A significant difference was observed between the two age subgroups. Specifically, a performance of 

82.74% was achieved on the knee OA recognition for older participants, whereas the knee OA diagnosis 

accuracy of the 70- age subgroup (78.34%) was closer to the overall accuracy taken on the entire dataset. 

The accuracy obtained by the DNN model built on the aged subgroup (70+) was the highest reported in 

this work. This finding implies that local models trained on more focused populations could provide better 

decisions focusing on the specific characteristics of the subgroup population, thus outperforming global 

models trained on the entire dataset.  

 

Results from obesity subgroups  

Examining the results of the two-weight subgroups, a moderate difference of approximately 2.5% was 

observed. Specifically, a performance of 81.82% was achieved on the knee OA recognition for participants 

on the non-obese subgroup, whereas the knee OA diagnosis accuracy of the obese subgroup (79.21%) was 

closer to the overall accuracy taken on the entire dataset. 

Figure 21 summarizes the overall and per-class accuracies obtained from the models built on participants’ 

data from separate subgroups. The variability in the obtained accuracies can be attributed to the fact that 

any learning methodology strongly depends on the dataset in which is trained on. In our case, the proposed 

DNN methodology has provided higher accuracies for the majority class (incidence) in 5 out of the 6 cases 

with the overall accuracy in between the two class accuracies. The most balanced distribution of accuracies 

(for progression, incidence, and overall) was achieved in the female subgroup.  

The results above indicate the need for further analysis with respect to the predictive capacity of any learning 

methodology not only on entire datasets but also on (sensitive or not) data subgroups. To address this 

challenge, the following subsections focus on a more extended validation of the proposed DNN 

methodology and benchmarks for both accuracy and fairness.  

 

Accuracy versus fairness 

 

 
 

Figure 23. Fairness achieved by the proposed DL methodology in subgroups and the full set: a) BEO and b) DP 
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Figure 24. Comparison of the proposed DNN methodology with benchmarks for accuracy and fairness 

 

This subsection provides a more detailed representation of the obtained performance of the proposed 

methodology with respect to both accuracy and fairness with and without the application of data resampling 

through SMOTE. Specifically, the DNN methodology was trained on the entire training dataset and the 

performance is presented separately for each one of the six subgroups on the testing set. Table 19 presents 

the performances accomplished by the most accurate DNN architectures with and without SMOTE-SVM 

(on the right and left side on the table, respectively). 

 

Comparable subgroup accuracies were received for both approaches (with and without data sampling), 

whereas a significant difference was observed in the class accuracies. Specifically, the class accuracies of the 

SMOTE-enabled models obtained on the 6 subgroups received values in the range of 71.76% – 87.37%, 

whereas the respective class accuracies of the non-SMOTE models were in the range of 64.47% – 86.87%. 

These findings are verified in Figure 22a that presents the fairness performance (as measured by BEO) with 

respect to overall accuracy for all the different DNN architectures that were investigated in this work. It is 

concluded that SMOTE has a positive effect on fairness performance (BEO) but at the same time it leads 

to slightly less accurate models. In terms of demographic parity (Figure 22b), both approaches had a 

comparable performance with negligible differences in DP values (with the range of <1%).    

 

Figure 23 shows the fairness performance of the proposed DNN methodology as trained on participants 

of each one of the 6 subgroups and the full set (with and without data sampling). The best BEO 

performance was achieved by the SMOTE-enabled model trained on the full set. Training the proposed 

DNN methodology on the full set (without SMOTE) led to the highest DP performance. Overall, the 

following remarks can be extracted from the results of this subsection: 

 

Data sampling has a positive effect on the fairness performance of the DNN methodology leading at the 

same time to more balanced rates for TP and TN throughout all data subgroups.  

 

The increase in fairness performance comes with a small decrease (<1% on average) on the overall 

predictive accuracy of the models.  

a) b) 
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Training on the full dataset increases fairness (both BEO and DP). Thus, special attention should be given 

in the selection of the training sets that need to represent the whole data variability comprising participants 

from all sensitive subgroups.  

 

Comparative analysis with benchmark classifiers 

One of the aims of this work was to compare DNN with a variety of well-known machine learning 

algorithms on the 2-class classification problem using the entire feature sets. To further validate the 

proposed DNN, the following machine learning algorithms were evaluated for the KOA classification 

problem: Decision trees (DTs), KNN  with k=1 and 5, support vector machines (SVM) algorithms with 

RBF kernel and two ensemble techniques, AdaBoost and Random Forest. Figure 4 compares the 

performance of the proposed DNN methodology with benchmarks with respect to both accuracy and 

fairness. DNN accomplished the optimum overall performance with the best accuracy (79.6%) and high 

fairness values (BEO: ~92% and DP:98.5%). The second-best performance was received by AdaBoost 

which was slightly less accurate (~79%) and less fair (BEO: ~92% and DP: 97.9%). High BEO values 

(>96%) were achieved by Random Forest that received lower DP values compared to DNN and was less 

accurate (78.6%). The highest BEO values were achieved by KNN1 without SMOTE. However, this 

model was less accurate with ACU<77%. The rest of the ML models had moderate performances in 

terms of accuracy and/or fairness. Consequently, the proposed DNN outperforms the above well-known 

machine learning techniques in the knee OA diagnosis task. 

 

Comparison with existing non-invasive techniques 

This subsection focuses on a comparison between the predictive accuracy of the proposed methodology 

and existing non-invasive AI-based techniques of the recent literature. A deep neural network for detecting 

the occurrence of osteoarthritis has been presented in using patient’s statistical data of medical utilization 

and health behavior information. The study was based on 5749 subjects and resulted in 76.8% of the area 

under the curve (AUC). Similar to the previous study, a DNN-based methodology was proposed in utilizing 

risk factors from self-reported clinical data about joint symptoms, disability, function, and general health.  

The proposed methodology was demonstrated in the entire OAI population (with an accuracy of 80.74%) 

as well as in subgroups defined by gender and age where higher accuracies were reported. History and 

clinical characteristics of the subjects such as age, body mass index, and pain level have been also considered 

for decision-making in OA diagnosis. A success rate of about 80% was achieved using a decision tree 

equipped with multilayer perceptrons at its leaves. Alternatively, biomechanical data from human body 

motion analysis has been also explored as risk factors that could contribute to OA diagnosis resulting to 

detection accuracies up to 93% (demonstrated in datasets of moderate size). The predictive capacity of 

physical activity measures as contributing factors in the progression of KOA has been also investigated in 

leading to accuracies up to 74.5%. Overall, in terms of accuracy, the proposed in this work methodology 

provided comparative results with studies employing similar features (non-imaging history and/or clinical 

data). However, unlike all the aforementioned works, the main novelty of this work lies in the inclusion of 

fairness metrics for the performance evaluation of the classification results. 

 

6. Quantifying of MRI impact  

The entire OAI MRI Data set consists of 2002 variables, one response variable, and 679 observations. Two 

variables of the data were removed because as data indexes. The rest of the variables are separated into two 

major categories, femoral and tibial consisting of 1000 variables each. In each of those categories of the 

variables the variables further separate in two categories, one category for the mean values and one category 

for the standard deviation. 
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The response variable is a two classes categorical variable. The first class, represented with “0”, is the class 

of a person without osteoarthritis which will not present osteoarthritis in the near future. The second class, 

represented with “1”, is the class with a person which in the near future will present osteoarthritis in one 

or both of his knees. From now on the second class represented with “1” will be considered as the positive 

class. 

A corelation analysis of the dataset was applied for all the possible combinations of the above data 

categories [1]. For brevity, only the corelation, of the variables’ categories combination which provide the 

best results will be provided. The correlation analysis of the selected variables saw that there are highly 

correlated variables inside the data set in the figure below we can see how many variable pairs are correlated 

(positively or negatively) and in what degree. 

 

 

Figure 25. Corelation analysis. 

 

To produce the Figure 25, a correlation matrix was created with the Spearman’s rank correlation coefficient 

measure. From this matrix, we removed the values of the major diagonal because it represents pairs of the 

same variables which they have correlation 1. 

Highly corelated variables in the dataset are considered variables with corelation values over 0.7. The 

number of which will be presented in the table below for all the possible combinations of the OAI MRI 

variables’ categories. 

Table 20. OAI MRI variables’ categories.  

Category combination 

name 

Number of corelated 

variables 

all 2000 / 2000 

femoral 1000 / 1000 

femoral mean 305 / 500 

femoral std 500 / 500 

mean 595 / 1000 

std 985 / 1000 

tibial 1000 / 1000 

tibial mean 290 / 500 

tibial std 489 / 500 
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In the above figure we can observe that there a big number of highly corelated variable in all the variable 

categories, and in some cases the entire dataset is highly corelated. The smallest proportion of highly 

corelated variables can be found in the tibial mean variables category while the mean variables category 

also, contains among the smallest proportions of highly corelated variables. 

 

Data pre-processing 

Feature selection (Variable Importance) 

The first pre-processing step executed for the data set is the Variable Importance Analysis with the use of 

the Random Forest Algorithm (RF). By using the Mean Decrease in Accuracy (MDA) measure. The resulted 

variables’ selection was NOT used in the analysis. Its purpose is a better understanding of the data set. 

 In order to calculate the MDA with the RF algorithm the permuted out-of-bag (OOB) data where used. 

Specifically, by recording the prediction error on the OOB portion of data, for each tree. The same process 

is repeated after permuting each predictor variable. The difference between the two (Decreases in Accuracy 

of Trees) is then averaged over all trees, and normalized by the standard deviation of the differences. 

𝑀𝐷𝐴 =  
𝑀𝑒𝑎𝑛(𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑖𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑇𝑟𝑒𝑒𝑠)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑖𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑇𝑟𝑒𝑒𝑠)
 

For the calculation of the importance for the OAI MRI dataset variables, a RF model was created with the 

use of 1000 variables of the mean features. This decision is based on the classification results of all the 

categories combinations. This model creation was possible because RF is a decision tree-based algorithm. 

In the following figures 200 of the 1000 variables contained in then mean dataset, the 100 variables with 

the highest MDA score on the left figure. On the right figure there are the 100 variables with the lowest 

MDA score. In both figures the variables are presented in descending order, from the most important to 

the less important. It is noteworthy that all the variables of the lowest MDA score figure have scores bellow 

zero. 
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Figure 26. Variables with the highest MDA score. 
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Data normalization 

For the normalization of the data the technique of min-max scaling or min-max normalization. This 

technique is rescaling the range of features to scale the range in [0, 1] or [−1, 1]. Selecting the target range 

depends on the nature of the data. The general formula for a min-max of [0, 1] is given as: 

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 , 

where x is an original value, x ′ is the normalized value. After the scaling of the data the ranges of the 100 

first variables are sawn in the figure bellow. 

Dimensionality reduction 

Because of the data’s high dimensionality, it was dimmed necessary to implement dimensionality reduction 

techniques. The chosen examined techniques are the Principal Components Analysis (PCA) and the 

Random Projections (RP) [2, 3]. For the PCA technique, we calculate the principal components matrix and 

the projections of the data on the desired number of dimensions. The number of principal components 

was selected in two ways, first we arbitrary selected 2, 3, 4, and 5 principal components. The second way is 

the from the cumulative amount of variance explained by each principal component, from a literature 

review this number is 0.7. The number of principal components, that explain 0.7 of the total variance in 

the OAI MRI dataset, is 6. 

For the RP technique, a projection matrix was created with use of Gaussian Distribution. The dimensions 

of the resulted vector space are selected in two ways, similar to the PCA technique, arbitrary and by a 

literature recommendation. Arbitrary we select 2, 3, and 4 dimensions. After a literature review, we 

implemented the Johnson-Lindenstrauss lemma with an error tolerance of 0.5. This methodology gave us 

a result of 6 dimensions. 

Table 21. Classification results with colour coding to aid visual identification of the performance of the different algorithms. 
Green: indicates specificity or sensitivity value of 1, and the respective sensitivity or specificity value is 0 in those cases. Those 
values cannot be taken into account; Yellow: maximum values of each of the algorithms; Red: maximum values on each of the 
metrics. 
 

  kNN LDA mLR RF XGB 

acc sens spec acc sens spec acc sens spec acc sens spec acc sens spec 

PCA 2dims 0.526 0.508 0.544 0.571 0.646 0.500 0.571 0.646 0.500 0.556 0.554 0.559 0.564 0.585 0.544 

PCA 3dims 0.489 0.446 0.529 0.474 0.508 0.441 0.474 0.508 0.441 0.519 0.508 0.529 0.571 0.569 0.574 

PCA 4dims 0.496 0.492 0.500 0.451 0.508 0.397 0.466 0.508 0.426 0.564 0.600 0.529 0.617 0.692 0.544 

PCA 5dims 0.519 0.523 0.515 0.474 0.508 0.441 0.481 0.508 0.456 0.489 1.000 0.000 0.549 0.585 0.515 

PCA 

0.7var 

6dims 

0.511 0.523 0.500 0.489 0.477 0.500 0.489 0.492 0.485 0.429 0.431 0.426 0.541 0.523 0.559 

RP 2dims 0.459 0.400 0.515 0.444 0.431 0.456 0.444 0.431 0.456 0.511 0.000 1.000 0.571 0.538 0.603 

RP 3dims 0.526 0.538 0.515 0.564 0.631 0.500 0.564 0.631 0.500 0.511 0.000 1.000 0.541 0.508 0.574 

RP 4dims 0.481 0.477 0.485 0.504 0.585 0.426 0.504 0.585 0.426 0.511 0.000 1.000 0.511 0.492 0.529 

RP JL 

lemma 

6dims 

0.507 0.532 0.487 0.500 0.500 0.500 0.500 0.500 0.500 0.551 0.000 1.000 0.507 0.468 0.539 

 

As it is consistent with the results of the classification without the application of dimensionality reduction, 

when we apply dimensionality reduction the results of the classification accuracy relations between the 

classification algorithms remain almost identical, with the best results to be provided by the XGBoost 

algorithm. Specifically, the best classification accuracy is achieved from the PCA technique at 4 dimensions, 

with a drop in accuracy of 0.033 from the original 0.650. 
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Visualization of the data 

For the visualization of the data the Principal Components Analysis was utilized. The visualization was 

applied on for all the data, the femoral variables, the tibial variables, the mean variables, and the std 

variables. The projection of the data on the first 2 principal components is given in the Figures 27-31 

bellow. 

 

Figure 27. Principal Components Analysis for all variables. 

 

 

Figure 28. Principal Components Analysis for femoral variables. 
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Figure 29. Principal Components Analysis for tibial variables. 

 

 

Figure 30. Principal Components Analysis for mean variables. 
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Figure 31. Principal Components Analysis for std variables. 

 

As it is immediately apparent from the representation of the data, the Classes “0” and “1” aren’t segregated 

at all, in all the cases. As the density plots of each principal component represent the classes have almost 

identical distribution in the space. Form these visualizations an initial conclusion is that we have an almost 

impossible classification problem to tackle. 
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Classification tasks 

The classification algorithms used are the Multinomial Logistic Regression (MLR), the Linear Discriminant 

Analysis (LDA), the k-Nearest Neighbours (kNN), the Random Forest (RF) and finally the XGBoost. 

These algorithms are applied on almost all the variable categories of the OAI MRI dataset. Specifically, on 

all the variables, on the mean variables, on the std variables, on the femoral variables, on the femoral mean 

variables, on the femoral std variables, on the tibial variables, on the tibial mean variables, and on the tibial 

std variables. 

The results of the classifications can be seen on the table below. The measures used are accuracy, sensitivity 

and specificity. 

Table 22. Classification results with colour coding to aid visual identification of the performance of the different algorithms. 
Green: indicates specificity or sensitivity value of 1, and the respective sensitivity or specificity value is 0 in those cases. Those 
values cannot be taken into account; Yellow: maximum values of each of the algorithms; Red: maximum values on each of the 
metrics. 
  

  kNN LDA mLR RF XGB 

acc sens spec acc sens spec acc sens spec acc sens spec acc sens Spe

c 

all 0.5

77 

0.9

01 

0.1

86 

0.5

62 

0.5

49 

0.5

76 

0.5

38 

0.5

07 

0.5

76 

0.3

77 

0.4

79 

0.2

54 

0.5

38 

0.4

79 

0.6

10 

femor

al 

0.5

23 

0.9

01 

0.0

86 

0.5

36 

0.5

43 

0.5

29 

0.5

56 

0.6

17 

0.4

86 

0.4

64 

0.0

00 

1.0

00 

0.5

17 

0.4

57 

0.5

86 

femor

al 

mean 

0.4

86 

0.9

38 

0.1

05 

0.4

79 

0.4

69 

0.4

87 

0.5

00 

0.5

94 

0.4

21 

0.4

43 

0.4

69 

0.4

21 

0.6

14 

0.6

25 

0.6

05 

femor

al 

std 

0.5

32 

0.9

12 

0.1

69 

0.4

68 

0.4

71 

0.4

65 

0.5

76 

0.6

47 

0.5

07 

0.4

89 

1.0

00 

0.0

00 

0.5

83 

0.5

88 

0.5

77 

mean 0.4

96 

0.8

52 

0.2

11 

0.5

18 

0.4

92 

0.5

39 

0.5

04 

0.5

41 

0.4

74 

0.4

45 

1.0

00 

0.0

00 

0.6

50 

0.6

07 

0.6

84 

std 0.5

21 

0.8

29 

0.2

14 

0.5

14 

0.6

00 

0.4

29 

0.5

29 

0.5

86 

0.4

71 

0.5

00 

0.0

00 

1.0

00 

0.5

36 

0.5

57 

0.5

14 

tibial 0.5

58 

0.7

29 

0.3

75 

0.5

27 

0.5

53 

0.5

00 

0.5

45 

0.5

88 

0.5

00 

0.4

85 

0.0

00 

1.0

00 

0.5

52 

0.5

18 

0.5

88 

tibial 

mean 

0.4

96 

0.5

63 

0.4

24 

0.5

45 

0.5

94 

0.4

92 

0.4

55 

0.4

38 

0.4

75 

0.4

88 

0.4

38 

0.5

42 

0.4

80 

0.4

69 

0.4

92 

tibial 

std 

0.5

22 

0.9

03 

0.2

03 

0.4

71 

0.5

16 

0.4

32 

0.4

85 

0.4

84 

0.4

86 

0.5

88 

0.5

81 

0.5

95 

0.5

51 

0.5

97 

0.5

14 

 

In the results we can observe that there is a diversity of the classification accuracy, sensitivity, and specificity 

based on the variable categories that are used. Even more there is a significant diversity between the used 

classification algorithms. Between the classification categories it is expected to exist diversity on the results. 

The fact that proves that claim is shown on the results correlation analysis and further established visually 

on the PCA visualization of the data in combination with the unique characteristics of each classification 

algorithm. 

From the above results we can conclude that the results of the XGBoost algorithm are among the most 

satisfactory, between the results of all the classification algorithms. Except the largest classification accuracy 

in most cases, we can observe a balance between the prediction of the positive and negative class of the 
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response variable. The only case which one of the other algorithms, LDA specifically, archives those criteria 

better is the case of the category for all the variables of the OAI MRI dataset. 

The above results in the conclusion that the best classification accuracy can be provided from the mean 

variable category. Bellow, (Figures 32-36) are presented the Ro Curves which illustrate the results, only, of 

the mean variable category: 

MLR 

 

Figure 32. AUC for MLR model. 

 

LDA 
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Figure 33. AUC for LDA model. 

 

kNN 

 

Figure 34. AUC for kNN model. 

 

RF 
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Figure 35. AUC for RF model. 

 

 

XGBoost 

 

Figure 36. AUC for XGBoost model. 

 

The extensive analysis presented in this report shows us the challenges presented in the OAI MRI dataset. 

The findings of this analysis gave us valuable insight into this database. We found that it is a dataset that 
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contains a large number of correlated variables. This results in a not so separable dataset, as shown even in 

all classification tasks. Finally, form the dimensionality reduction analysis we found that we can reduce the 

dimensions on the dataset with a relatively small cost in the classification accuracy. 

 

7. Interpretable models 

Diagnostic Model  

The model used in the diagnostic analysis was logistic regression. The logistic regression approach was 

chosen after considering alternative analysis methods [10]. This is due to the method being preferred by 

clinicians as it reflects well their decision making process. The goal for the logistic model is to determine, 

based on 8 features relating to a subject, whether they are likely to have KOA and therefore require further 

investigations into their symptoms. The presence of clinical KOA, KL grade 2 or above is the outcome. 

The model was trained and tested using the OAI data with 1353 and 1354 subjects respectively.  

 

Prognostic Model 

The prognostic analysis uses Cox regression to model how the covariates jointly influences the probability 

of the subject developing KOA. After modelling with Cox we created cohorts by risk stratification, to 

highlight the criteria for being low and high risk at developing KOA in 5 years from the baseline assessment. 

To stratify the group into cohorts the first step is to establish a cut point that gives the biggest separation 

in the subjects. This is done with a model containing 5 variables from the subjects initial assessment. The 

groups used to model this analysis is taken from the original OAI data and removes subjects with KOA at 

their initial assessment. The model was then trained and tested on 1002 and 1003 subjects from the OAI 

dataset respectively.  

 

External Validation  

To validate and ensure that these models were not overfitting to the OAI data used to train them, we used 

the MOST data set to validate the results. The MOST data was collected from different centres than those 

used in the OAI study so this helps to determine if the model is able to stand up to institutional bias. This 

helps to assess if the model can be used outside of the bounds from which the data was collected, and also 

contributes to showing that a prediction model is more suitable for use in clinical practice [11]. The 

validation set for the diagnostic model is 2006 subjects, whilst the validation set is 1155 subjects.  

 

Results 

The OAI data test set has a prevalence of KOA at 39%. The MOST validation set prevalence is at 60%. 

The probabilistic cut-off for binary classification was taken to be 0.5. The AUROC and CI for the diagnostic 

model, for test and validation are 0.7475 (0.7209-0.7742) and 0.6697 (0.6311-0.7082) respectively.  

 

As the data for the prognostic model differs from that in the diagnostic model the training and test sets are 

also different. The training set and test set are made up of 1002 and 1003 subjects respectively. The external 

validation set contains n = 1155 subjects.  

Figure 37 shows the stratification curves on the OAI training data for the raw data and the predictions 

produced on the MOST validation. The last event recorded in cohort 2 on the training data within the 5-

year span is at day 1642. The stratification curves produced are well separated with no crossover on the 

confidence intervals, which indicates that on unseen data the well-separated groups hold true.  

In conclusion, the validation with external data of the diagnostic and prognostic models developed in 

OActive shows that these models have potential clinical validity. The associated web-apps are currently 

available only within the consortium, while a journal paper is being submitted. Pending the reviews of the 
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paper, the apps have potential for widespread use by clinicians to stratify patients and to communicate to 

them the importance of preventive measures. 
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Figure 37. Stratification curves on the left showing OAI training data showing the high and low risk cohorts. Note the 

last event recorded in cohort 2 within the 5-year span is at day 1642. The stratification curves on the right are the validation 

data showing the high and low risk cohorts fitted to the models developed using the OAI data. 

8. Conclusions 

This deliverable (Deliverable D9.3) describes the results and outcomes of the long-term evaluation of 

OACTIVE using data from big data registries in OACTIVE.  Deliverable (D9.3) presents the validation of 

the personalised predictive OACTIVE models, which are used either for prevention, diagnosis, or even 

during the intervention stage. Specifically, Section 3 presents a baseline performance with PCA on OAI 

database and in Section 4 the validation of the personalized prediction and diagnosis models is presented. 

In Section 5 Machine Learning and Deep Learning Diagnosis models with a focus on accuracy and fairness 

are presented. Section 6 presents a approach for the quantification of MRI impact and finally, in Section 7 

Interpretable models validated on MOST data are shown. 

 

Initially, an extensive analysis was presented in this report. This work shows the high quality of OACTIVE’s 

database. The findings of this analysis gave us valuable insight into this database. We found that it is a 

dataset that contains a large number of correlated variables. This results in a not so separable dataset, as 

shown even in all classification tasks. In the first look, the resulted accuracy is over 0.7 in all cases. But if 

we count the unbalanced nature of the data in combination with the sensitivity, which is below 0.16 in all 

cases, we can conclude that the positive class is not predicted, by the classification models. To cope with 

this limitation of the data we proposed several technics which have described in Deliverable 6.3 and 

Deliverable 6.5 and validated in this report.   

Then, we worked on the evaluation of the personalised prediction and diagnosis models. The first approach 

of the personalized prediction models focuses on the development of a ML-based methodology capable of 

(i) predicting KOA progression (and specifically KL grades progression) and (ii) identifying important risk 

factors which contribute to the prediction of KOA. The proposed FS methodology combines well-known 

approaches including filter, wrapper, and embedded techniques, whereas feature ranking is decided on the 



OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D9.3                                                                                                                               60     
 

basis of a majority vote scheme to avoid bias. Finally, a variety of ML models were built on the selected 

features to implement the KOA prediction task (treated as a two-class classification problem where a 

participant is classified to either the class of KOA progressors or to the non-progressors’ class). Apart from 

the selection of important risk factors, this work also explores three different options with respect to the 

period within which data should be considered in order to reliably predict KOA progression. The nature 

of the selected features was also discussed to increase our understanding of their effect on the KOA 

progression. After extensive experimentation, a 74.07% classification accuracy was achieved by SVM on a 

group of fifty-five selected risk factors (in dataset D). Understanding the contribution of risk factors is a 

valuable tool for creating more powerful, reliable, and non-invasive prognostic tools in the hands of 

physicians. For our future work, we are planning to also consider image-based biomarkers and areas with 

valuable information derived from biomechanical data that are expected to further improve the predictive 

capacity of the proposed methodology. ML explainability analysis will also be considered to capture the 

effect of the selected features on the models’ outcomes. 

Furthermore, the purpose of the second work was: (i) to identify different clusters of KOA pain 

progression, (ii) to identify informative parameters that are relevant with pain progression from a big pool 

of risk factors that are available in osteoarthritis initiative (OAI) database and (iii) to build ML models that 

can predict long-term pain progression using baseline data. To accomplish the aforementioned targets, we 

built a ML-empowered methodology capable of achieving state-of-the-art accuracy results with the 

minimum possible number of features. Specifically, we have achieved an 84.3% for the prediction of pain 

on the left leg, and an 82.5% on the right leg. An important observation here is that these high accuracy 

scores were achieved by using a relatively small subset of features (25 features for the left leg, and 20 for 

the right leg) that share similar characteristics. It was also observed that the most important features for the 

pain progression prediction are related directly to the pain on each leg respectively. These accuracy scores, 

with the combination of a small number of features, can set the foundation, for the development of robust 

tools capable of identifying pain progression at an early stage, therefore, improving future KOA prevention 

efforts. Our ultimate goal is to improve the quality of life for people with KOA. For our future work, we 

are planning to also consider imaging data and associated image-based biomarkers that are expected to 

further improve the predictive capacity of the proposed methodology. 

Moreover, the main objective of the third approach was the accurate prediction of JSN in KOA patients 

based on a machine learning pipeline trained on multimodal data from the OAI (725 features in total were 

considered). To identify and group patients with and without JSN progression a clustering process was 

initially performed on the JSN progression based on the JSM outcomes of patients over the first five visits. 

Subsequently, for the identification of the most important features for the related clusters discrimination 

(progressing versus non-progressing patients), a hybrid feature selection technique was employed. Finally, 

the selected features were employed for the training of various ML models in order to predict JSN in KOA 

patients. The outcome of the ML models indicated that the LR model achieved the best performance for 

the left leg with a 78.3% accuracy for 164 features, while for the right leg, the SVM model dominated with 

a 77.7% accuracy for 88 and 90 features. However, the best overall performance was achieved by the second 

strategy where the data from both legs were combined. Specifically, the LR model achieved an 83.3% 

accuracy for a significantly lower number of features (29). This work was not only focused on the 

development of prediction models, but also aimed to reveal significant insights regarding the nature of the 

predictive risk factors that were identified as important. Through this analysis, we concluded that a blend 

of heterogeneous features from almost all feature categories is necessary to maximize the performance and 

prediction accuracy of the models. The nature of the selected features along with their impact on the 

prediction outcome (via SHAP) was also discussed to increase our understanding of their effect on JSN 

progression. Future work should focus on incorporating morphological knee features as an additional 

feature category that could potentially increase the performance of the predictive models. These features 

can be extracted by employing deep learning algorithms for image processing. Alternative data clustering 



OACTIVE – 777159                                                                                                        SC1-PM-17-2017 

Deliverable D9.3                                                                                                                               61     
 

algorithms, such as self-organizing maps (SOM) could also be explored to improve the clustering 

performance of the proposed methodology, leading to more informative and distinct data classes. 

The fourth work had the aim to increase the generalization using an evolutionary Machine Learning 

approach. Specifically, this work focuses on the identification of important and robust risk factors which 

contribute to KOA progression. The proposed FS methodology relies on an evolutionary machine learning 

methodology that leads to the selection of a relatively small feature subset (35 risk factors) which generalizes 

well on the whole dataset (mean accuracy of 71.25%). We investigated the effectiveness of the proposed 

approach in a comparative analysis with well-known FS techniques with respect to metrics related to both 

prediction accuracy and generalization capability. The nature of the selected features along with their impact 

on the prediction outcome (via SHAP) was also discussed to increase our understanding of their effect on 

KOA progression. Identifying and understanding the contribution of risk factors on KOA progression may 

enable the implementation of better prevention strategies prioritizing non-surgical treatments, essentially 

preventing an epidemic of KOA. 

In addition, we worked in diagnosis of KOA. In this task a machine learning workflow for diagnosis of 

KOA with a focus on post-hoc explainability is provided. Overall, understanding the inner workings of ML 

algorithms is of utmost importance. Explainability refers to being able to trace and follow the logic ML 

algorithms use to form their conclusions. Thus, explainability provides certainty and eliminates prejudices 

about the correctness of the ML models. The proposed methodology is based on a hybrid approach that 

combines a robust feature selection technique with a post-hoc explainability analysis via SHAP that 

enhances our understanding of the methodology which is applied in the diagnosis of KOA. Understanding 

the contribution of risk factors is a valuable tool for creating more powerful, reliable, and non-invasive 

diagnostic tools in the hands of physicians. 

In section 5, the proposed DNN methodology shows potential for non-invasive OA diagnosis and 

demonstrates its potential to provide both accurate and fair decisions. In this respect, this work contains 

original content in the first-ever validation of DNN and machine learning models with respect to fairness 

in the KOA classification research. Comparative analysis verified the superiority of the proposed 

methodology for both accuracy and fairness over other common classification methods given similar inputs. 

This shows that DNNs are a viable tool to be used for medical classification tasks. Future studies should 

be focused on a wider application of fairness metrics for the assessment of machine and deep learning 

models applied in medicine. Our plans include the development of machine learning and deep learning 

models that could predict the progression of the disease using selected risk factors. More emphasis will be 

given to evaluate bias and fairness of the generated prediction models that will be trained on data subgroups 

defined by parameters such as body mass index combined with demographics and social indicators. Open 

data and scientific tools using unbiased and fair machine/deep learning techniques for OA diagnosis are 

promising and must be dynamically encouraged within the OA research community. 

The extensive analysis in Section 6 shows us the challenges presented in the OAI MRI dataset. The findings 

of this analysis gave us valuable insight into this database. We found that it is a dataset that contains a large 

number of correlated variables. This results in a not so separable dataset, as shown even in all classification 

tasks. Finally, form the dimensionality reduction analysis we found that we can reduce the dimensions on 

the dataset with a relatively small cost in the classification accuracy. 

Statistical models for diagnosis and prognosis were developed with data from the OAI and Multicenter 

Osteoarthritis Study (MOST) data set. This provided the opportunity for external validation on a substantial 

data set acquired with a very different protocol. The protocol differences are especially with respect to 

follow-up. This resulted in apparent differences in the prognostic models. However, the separation of the 

Kaplan-Meier curves for the predicted high- and low-risk cohorts remained valid. This shows a level of 

validation that is currently beyond the sate-of-the-art for KOA. 
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